Skip to main content
Log in

Specific Gene-Expression Profiles of Noncancerous Liver Tissue Predict the Risk for Multicentric Occurrence of Hepatocellular Carcinoma in Hepatitis C Virus–Positive Patients

  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Hepatitis C virus (HCV) infection produces chronic hepatitis, cirrhosis, and, ultimately, hepatocellular carcinoma (HCC). A molecular analysis of the damaged liver tissues infected with HCV may identify specific gene-expression profiles associated with a risk for liver carcinogenesis.

Methods

Forty patients with HCV-positive HCC were classified into two groups: single nodular HCC group (n = 28) and multicentric HCC group (n = 12). Using a complementary DNA microarray, we compared the gene-expression patterns of the noncancerous liver tissue specimens between the two groups. We also identified the differentially expressed genes related to multicentric recurrence in the liver remnant. We then evaluated whether a specific gene-expression profile can accurately estimate the risk for multicentric hepatocarcinogenesis.

Results

We selected the 230 differentially expressed genes in the multicentric HCC group. A hierarchical clustering analysis identified a cluster that might be closely associated with the multicentric occurrence of HCC. On the basis of the gene-expression profiling of the 36 genes commonly associated with both multicentric HCC and multicentric recurrence, we created a scoring system to estimate the risk for multicentric hepatocarcinogenesis. The prediction score of patients in the multicentric HCC group with multicentric recurrence (19.9 ± 9.2) was significantly higher (P < .05) than that in the single nodular HCC group without multicentric recurrence (−1.8 ± 12.7).

Conclusions

Specific gene-expression signatures in noncancerous liver tissue may help to accurately predict the risk for developing HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. El Serag HB, Mason AC. Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 1999;340:745–50

    Article  PubMed  CAS  Google Scholar 

  2. Tsukuma H, Hiyama T, Tanaka S, et al. Risk factors for hepatocellular carcinoma among patients with chronic liver disease. N Engl J Med 1993;328:1797–801

    Article  PubMed  CAS  Google Scholar 

  3. Sherlock S. Viruses and hepatocellular carcinoma. Gut 1994;35:828–32

    PubMed  CAS  Google Scholar 

  4. Tarao K, Rino Y, Ohkawa S, et al. Association between high serum alanine aminotransferase levels and more rapid development and higher rate of incidence of hepatocellular carcinoma in patients with hepatitis C virus-associated cirrhosis. Cancer 1999;86:589–95

    Article  PubMed  CAS  Google Scholar 

  5. Utsunomiya T, Matsumata T, Adachi E, et al. Limitations of current preoperative liver imaging techniques for intrahepatic metastatic nodules of hepatocellular carcinoma. Hepatology 1992;16:694–701

    PubMed  CAS  Google Scholar 

  6. Shimada M, Takenaka K, Gion T, et al. Prognosis of recurrent hepatocellular carcinoma: a 10-year surgical experience in Japan. Gastroenterology 1996;111:720–6

    Article  PubMed  CAS  Google Scholar 

  7. Poon RT, Fan ST, Ng IO, et al. Different risk factors and prognosis for early and late intrahepatic recurrence after resection of hepatocellular carcinoma. Cancer 2000;89:500–7

    Article  PubMed  CAS  Google Scholar 

  8. Takenaka K, Adachi E, Nishizaki T, et al. Possible multicentric occurrence of hepatocellular carcinoma: a clinicopathological study. Hepatology 1994;19:889–94

    Article  PubMed  CAS  Google Scholar 

  9. Kumada T, Nakano S, Takeda I, et al. Patterns of recurrence after initial treatment in patients with small hepatocellular carcinoma. Hepatology 1997;25:87–92

    PubMed  CAS  Google Scholar 

  10. Iizuka N, Oka M, Yamada Okabe H, et al. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet 2003;361:923–9

    Article  PubMed  CAS  Google Scholar 

  11. Kurokawa Y, Matoba R, Takemasa I, et al. Molecular-based prediction of early recurrence in hepatocellular carcinoma. J Hepatol 2004;41:284–91

    Article  PubMed  CAS  Google Scholar 

  12. Kim JW, Ye Q, Forgues M, et al. Cancer-associated molecular signature in the tissue samples of patients with cirrhosis. Hepatology 2004;39:518–27

    Article  PubMed  CAS  Google Scholar 

  13. Liver Cancer Study Group of Japan. 2000. The General Rules for the Clinical and Pathological Study of Primary Liver Cancer. 4th ed. Tokyo: Kanahara Shuppan, p 32–3

    Google Scholar 

  14. Ueno S, Aoki D, Maeda T, et al. Preoperative assessment of multicentric occurrence in synchronous small and multiple hepatocellular carcinoma based on image-patterns and histological grading of non-cancerous region. Hepatol Res 2004;29:24–30

    Article  PubMed  Google Scholar 

  15. Utsunomiya T, Shimada M, Taguchi KI, et al. Clinicopathologic features and postoperative prognosis of multicentric small hepatocellular carcinoma. J Am Coll Surg 2000;190:331–5

    Article  PubMed  CAS  Google Scholar 

  16. Nishida K, Mine S, Utsunomiya T, et al. Global analysis of altered gene expressions during the process of esophageal squamous cell carcinogenesis in the rat: a study combined with a laser microdissection and a cDNA microarray. Cancer Res 2005;65:401–9

    PubMed  CAS  Google Scholar 

  17. Utsunomiya T, Okamoto M, Hashimoto M, et al. A gene-expression signature can quantify the degree of hepatic fibrosis in the rat. J Hepatol 2004;41:399–406

    Article  PubMed  CAS  Google Scholar 

  18. Eisen MB, Spellman PT, Brown PO, et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998;95:14863–8

    Article  PubMed  CAS  Google Scholar 

  19. Brazma A, Hingamp P, Quackenbush J, et al. Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat Genet 2001;29:365–71

    Article  PubMed  CAS  Google Scholar 

  20. Colombat M, Paradis V, Bieche I, et al. Quantitative RT-PCR in cirrhotic nodules reveals gene expression changes associated with liver carcinogenesis. J Pathol 2003;201:260–7

    Article  PubMed  CAS  Google Scholar 

  21. Anders RA, Yerian LM, Tretiakova M, et al. cDNA microarray analysis of macroregenerative and dysplastic nodules in end-stage hepatitis C virus-induced cirrhosis. Am J Pathol 2003;162:991–1000

    PubMed  CAS  Google Scholar 

  22. Greer P, Haigh J, Mbamalu G, et al. The Fps/Fes protein-tyrosine kinase promotes angiogenesis in transgenic mice. Mol Cell Biol 1994;14:6755–63

    PubMed  CAS  Google Scholar 

  23. Orlovsky K, Theodor L, Malovani H, et al. Gamma interferon down-regulates Fer and induces its association with inactive Stat3 in colon carcinoma cells. Oncogene 2002;21:4997–5001

    Article  PubMed  CAS  Google Scholar 

  24. Larsson N, Segerman B, Howell B, et al. Op18/stathmin mediates multiple region-specific tubulin and microtubule-regulating activities. J Cell Biol 1999;146:1289–302

    Article  PubMed  CAS  Google Scholar 

  25. Neben K, Korshunov A, Benner A, et al. Microarray-based screening for molecular markers in medulloblastoma revealed STK15 as independent predictor for survival. Cancer Res 2004;64:3103–11

    Article  PubMed  CAS  Google Scholar 

  26. Vauthey JN, Walsh GL, Vlastos G, et al. Importance of field cancerisation in clinical oncology. Lancet Oncol 2000;1:15–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by Grants-in-Aid for Scientific Research (17109013, 17591411, 17591413, 17015032, and 16390381), the Japan Society for the Promotion of Science, and a Health and Labor Sciences Research Grant on Hepatitis and BSE (14230801; the Ministry of Health, Labor and Welfare of Japan). Also supported by CREST, JST, Uehara Memorial Foundation, Yasuda Medical Research Foundation, Japanese Foundation for Multidisciplinary Treatment of Cancer, and Princess Takamatsu Cancer Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Mori MD.

Additional information

M. Okamoto and T. Utsunomiya contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamoto, M., Utsunomiya, T., Wakiyama, S. et al. Specific Gene-Expression Profiles of Noncancerous Liver Tissue Predict the Risk for Multicentric Occurrence of Hepatocellular Carcinoma in Hepatitis C Virus–Positive Patients. Ann Surg Oncol 13, 947–954 (2006). https://doi.org/10.1245/ASO.2006.07.018

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/ASO.2006.07.018

Keywords

Navigation