• 中国中文核心期刊
  • 中国科学引文数据库(CSCD)核心库来源期刊
  • 中国科技论文统计源期刊(CJCR)
  • 第二届国家期刊奖提名奖

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红火蚁次适宜区本地蚂蚁群落研究——以昆明为例

高舒桐 王思铭 张翔 沈丹 卢志兴 陈又清

引用本文:
Citation:

红火蚁次适宜区本地蚂蚁群落研究——以昆明为例

    作者简介: 高舒桐,从事昆虫生态学研究.
    通讯作者: 卢志兴, luzhixing@caf.ac.cn
  • 中图分类号: S969.554.2

Influence of Solenopsis invicta on Local Ant Communities in Sub-suitable Areas——An Example in Kunming

    Corresponding author: LU Zhi-xing, luzhixing@caf.ac.cn ;
  • CLC number: S969.554.2

  • 摘要: 目的 红火蚁入侵导致了严重的生态问题。温度是制约红火蚁入侵并发展的关键因素。本研究在云南省昆明市不同生境调查蚂蚁群落,旨在揭示红火蚁在次适宜区对本地蚂蚁群落的影响。 方法 于2021年6月和8月,选择云南省昆明市虹桥路和沙朗乡区域5种生境作为研究样地,采用陷阱法调查了不同样地蚂蚁群落,分析不同生境蚂蚁群落多样性、群落结构相似性以及本地蚂蚁群落与红火蚁发生情况关系。 结果 5种生境基于蚂蚁个体数的物种稀疏和预测曲线较平缓,抽样充分;5种生境中共采集蚂蚁2 748头,隶属于4亚科19属34种,其中红火蚁1 920头;桉树林中采集到红火蚁个体数最多(99.2%),其次为荒地(高红火蚁蚁巢密度HW 94.2%,低红火蚁蚁巢密度LW 90.7%),云南松次生林与荒地交错区最少(44.7%);云南松次生林中未采集到红火蚁;桉树林中仅采集到1种本地蚂蚁,荒地中分别采集到3种(HW)和7种(LW),交错区中采集到15种,云南松次生林中采集到18种;云南松次生林和交错区蚂蚁物种丰富度和Chao-1估计值显著高于桉树林,而二者优势度指数则显著低于桉树林;5种生境的蚂蚁群落结构相似性有显著差异,有红火蚁发生的生境的蚂蚁群落结构与云南松次生林不相似;红火蚁蚁巢密度与红火蚁工蚁多度、本地蚂蚁多度、物种丰富度无显著关联;随着红火蚁工蚁多度的增加,本地蚂蚁物种丰富度和多度均呈显著线性下降。 结论 在昆明红火蚁次适宜区,红火蚁多发生于受干扰的开阔生境,特别是稀疏的桉树林,而很少入侵郁闭度高的生境;红火蚁入侵后导致本地蚂蚁群落多样性水平显著降低,改变蚂蚁群落结构;红火蚁入侵后,需要种群发展至较大规模才表现出种群数量优势,进而对本地蚂蚁产生显著影响;减少红火蚁适宜生境,对适宜生境加强巡查,及时对中大型蚁巢开展药剂治理将有利于降低红火蚁发生发展。
  • 图 1  不同栖境基于蚂蚁个体数的物种稀疏和预测曲线

    Figure 1.  Rarefaction and extrapolation curves of different habitats based on ant individuals

    图 2  不同类型样地蚂蚁群落多样性指数比较箱线图

    Figure 2.  Boxplots of ant community diversity indices among different sites

    图 3  不同生境蚂蚁群落结构非度量多维度排序

    Figure 3.  nMDS ordination of ant community structure among different habitats

    图 4  红火蚁蚁巢密度与蚂蚁多度及物种丰富度线性回归模型

    Figure 4.  Liner regression models of density of S. invicta nest between ant abundance and species richness

    图 5  红火蚁多度与本地蚂蚁多度及物种丰富度线性回归模型

    Figure 5.  Liner regression models of S. invicta abundance between local ant abundance and species richness

    表 1  昆明市虹桥路和沙朗乡蚂蚁调查样地信息

    Table 1.  Information of ant sample sites in Hongqiao and Shalang of Kunming

    项目
    Item
    代码
    Code
    红火蚁蚁巢密度
    Nest density of red fire ant/hm2
    生境类型
    Habitat
    主要特点
    Characteristics
    红火蚁发生地 HW1 20.2 高红火蚁巢密度荒地 红火蚁入侵超过5年,废弃场地,四周有围栏,基本无人为活动干扰,无乔木,阳光能直射地面。
    HW2 17.1
    EP1 7.0 桉树林 红火蚁入侵超过4年,与HW相邻,基本无人为活动干扰,种植桉树,树龄7年以上,郁闭度约30%,大部分区域透射阳光。
    EP2 6.1
    LW1 8.5 低红火蚁巢密度荒地 红火蚁入侵约3年左右,有车辆碾压及堆废弃建筑材料痕迹,人为活动干扰轻微,无乔木,阳光直射地面。
    LW2 11.8
    EC1 11.1 LW和SF交错区 有挖土、踩踏等人为活动痕迹,人为活动干扰轻微,部分区域有乔木荫蔽,地面在部分时段能阳光直射或透射。
    EC2 9.5
    红火蚁未发生 SF1 NA 云南松次生林 云南松林为主的杂木林,有枯落物,有捡菌、踩踏痕迹,人为活动干扰中等,郁闭度约70%,能透射阳光。
    SF2 NA
    注:红火蚁蚁巢密度计算未包括废弃蚁巢,统计蚁巢直径超过5 cm的独立蚁丘并且有红火蚁存活,仅在样地选择首次调查时统计
    Notes: Abandoned ant nests were not included in the nest density calculation of red fire ant. Independent anthills with nests over 5 cm in diameter and surviving red fire ants were counted, only counted in the first survey
    下载: 导出CSV

    表 2  昆明市虹桥路和沙朗乡不同生境蚂蚁物种名录及多度

    Table 2.  Ant species and abundance of different habitats in Hongqiao and Shalang of Kunming

    物种名称 SpeciesEPHWLWECSF
    猛蚁亚科 Ponerinae
    环纹大齿猛蚁 Odontomachus circulus 1
    黄足短猛蚁 Brachyponera luteipes 1 1
    扁头猛蚁属待定种1 Ectomomyrmex sp.1 4
    扁头猛蚁属待定种2 Ectomomyrmex sp.2 1
    扁头猛蚁属待定种3 Ectomomyrmex sp.3 1
    切叶蚁亚科 Myrmicinae
    棒刺大头蚁 Pheidole spathifera 13 2
    大头蚁属待定种1 Pheidole sp.1 10
    大头蚁属待定种2 Pheidole sp.2 1 8
    厚结大头蚁 Pheidole nodifera 3
    乌木举腹蚁 Crematogaster ebenina 1 1
    盘腹蚁属待定种1 Aphaenogaster sp.1 3
    阿普特铺道蚁 Tetramorium aptum 18
    草地铺道蚁 Tetramorium caespitum 12
    铺道蚁属待定种1 Tetramorium sp.1 7
    铺道蚁属待定种2 Tetramorium sp.2 1
    疏毛无刺蚁 Kartidris sparsipila 12 361
    裸心结蚁 Cardiocondyla nuda 5 25 1 102
    宽结摇蚁 Erromyrmalati nodis 2
    红火蚁 Solenopsis invicta 624 571 556 169
    臭蚁亚科 Dolichoderinae
    无毛凹臭蚁 Ochetellus glaber 2
    黑头酸臭蚁 Tapinoma melanocephalum 1 2
    酸臭蚁属待定种1 Tapinoma sp.1 1
    蚁亚科 Formicinae
    开普刺结蚁 Lepisiota capensis 4
    角弓背蚁 Camponotus cornis 50 25
    弓背蚁属待定种1 Camponotus sp.1 1
    弓背蚁属待定种2 Camponotus sp.2 11
    弓背蚁属待定种3 Camponotus sp.3 1
    长角立毛蚁 Paratrechina longicornis 1
    林间毛蚁 Lasius hayashi 6
    玉米毛蚁 Lasius alienus 34 74
    毛蚁属待定种1 Lasius sp.1 6
    缅甸尼氏蚁 Nylanderia birmana 9
    黄足尼氏蚁 Nylanderia flavipes 2
    斜结蚁待定种1 Plagiolepis sp.1 1
    物种丰富度 Species richness 2 4 8 16 18
    多度 Abundance 629 606 613 378 522
    下载: 导出CSV
  • [1]

    WETTERER J K. Exotic spread of Solenopsis invicta Buren (Hymenoptera: Formicidae) beyond North America[J]. Sociobiology, 2013, 60(1): 50-55. doi: 10.13102/sociobiology.v60i1.50-55
    [2]

    APPERSON C S, ADAMS C T. Medical and agricultural importance of red imported fire ant[J]. The Florida Entomologist, 1983, 66(1): 121. doi: 10.2307/3494558
    [3]

    PIMENTEL D, ZUNIGA R, MORRISON D. Update on the environmental and economic costs associated with alien-invasive species in the United States[J]. Ecological Economics, 2005, 52(3): 273-288. doi: 10.1016/j.ecolecon.2004.10.002
    [4]

    ASCUNCE M S, YANG C C, OAKEY J, et al. Global invasion history of the fire ant Solenopsis invicta[J]. Science, 2011, 331(6020): 1066-1068. doi: 10.1126/science.1198734
    [5]

    WICKINGS K, RUBERSON J R. The red imported fire ant, Solenopsis invicta, modifies predation at the soil surface and in cotton foliage[J]. Annals of Applied Biology, 2016, 169(3): 319-328. doi: 10.1111/aab.12303
    [6]

    ALLEN C R, BIRGE H E, SLATER J, et al. The invasive ant, Solenopsis invicta, reduces herpetofauna richness and abundance[J]. Biological Invasions, 2017, 19(2): 713-722. doi: 10.1007/s10530-016-1343-7
    [7]

    HAINES A M, SISSON D C, GITZEN R A, et al. Impacts of red imported fire ants on northern Bobwhite nest survival[C]//National Quail Symposium Proceedings National Quail Symposium Proceedings, 2017, 8: 88.
    [8]

    BANKS N C, PAINI D R, BAYLISS K L, et al. The role of global trade and transport network topology in the human-mediated dispersal of alien species[J]. Ecology Letters, 2015, 18(2): 188-199. doi: 10.1111/ele.12397
    [9]

    BERTELSMEIER C, OLLIER S, LIEBHOLD A, et al. Recent human history governs global ant invasion dynamics[J]. Nature Ecology & Evolution, 2017, 1(7): 184.
    [10] 陆永跃, 曾 玲. 发现红火蚁入侵中国10年: 发生历史、现状与趋势[J]. 植物检疫, 2015, 29(2):1-6.

    [11]

    PORTER S D, SAVIGNANO D A. Invasion of polygyne fire ants decimates native ants and disrupts arthropod community[J]. Ecology, 1990, 71(6): 2095-2106. doi: 10.2307/1938623
    [12]

    MORRISON L W. Long-term impacts of an arthropod-community invasion by the imported fire ant, Solenopsis invicta[J]. Ecology, 2002, 83(8): 2337-2345. doi: 10.1890/0012-9658(2002)083[2337:LTIOAA]2.0.CO;2
    [13]

    VINSON S B. Impact of the invasion of the imported fire ant[J]. Insect Science, 2013, 20(4): 439-455. doi: 10.1111/j.1744-7917.2012.01572.x
    [14]

    WANG L, XU Y J, ZENG L, et al. Impact of the red imported fire ant Solenopsis invicta Buren on biodiversity in South China: A review[J]. Journal of Integrative Agriculture, 2019, 18(4): 788-796. doi: 10.1016/S2095-3119(18)62014-3
    [15]

    WONG M K L, GUENARD B, LEWIS O T. The cryptic impacts of invasion: functional homogenization of tropical ant communities by invasive fire ants[J]. Oikos, 2020, 129(4): 585-597. doi: 10.1111/oik.06870
    [16] 沈 鹏, 赵秀兰, 程登发, 等. 红火蚁入侵对本地蚂蚁多样性的影响[J]. 西南师范大学学报(自然科学版), 2007(2):93-97.

    [17] 苏艳超, 侯有明. 入侵红火蚁对本地蚂蚁及节肢动物多样性的影响[A]. 第二届全国生物入侵学术研讨会论文摘要集[C]. 2008: 32.

    [18] 吴碧球, 陆永跃, 梁广文, 等. 红火蚁对新入侵龙眼园和荒草地蚂蚁类群多样性的影响[J]. 生态学报, 2010, 30(8):2075-2083.

    [19] 宋侦东, 陆永跃, 许益镌, 等. 红火蚁入侵草坪过程中蚂蚁类群变动趋势[J]. 生态学报, 2010, 30(5):1287-1295.

    [20]

    LU Y Y, WU B qiu, XU Y J, et al. Effects of red imported fire ants (Solenopsis invicta) on the species structure of ant communities in south China[J]. Sociobiology, 2012, 59(1): 275-285.
    [21] 齐国君, 黄永峰, 岑伊静, 等. 红火蚁入侵对人为干扰区蚂蚁群落结构及多样性的影响[J]. 应用昆虫学报, 2015, 52(6):1368-1375. doi: 10.7679/j.issn.2095-1353.2015.163

    [22] 黄煜权. 本地蚂蚁对红火蚁入侵的行为适应及机制[D]. 广州, 华南农业大学, 2016.

    [23] 燕 迪, 卢志兴, 王 庆, 等. 红火蚁入侵强度对本地蚂蚁群落物种的发现-支配权衡的影响[J]. 昆虫学报, 2020, 63(3):334-342. doi: 10.16380/j.kcxb.2020.03.010

    [24]

    CHAN K H, GUENARD B. Ecological and socio-economic impacts of the red import fire ant, Solenopsis invicta (Hymenoptera: Formicidae), on urban agricultural ecosystems[J]. Urban Ecosystems, 2020, 23(1): 1-12. doi: 10.1007/s11252-019-00893-3
    [25]

    TSCHINKEL W R. The fire ants[M]. Cambridge: Belknap Press of Harvard University Press, 2013.
    [26]

    LEI Y, JALEEL W, FAISAL S M, et al. Effect of constant and fluctuating temperature on the circadian foraging rhythm of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae)[J]. Saudi Journal of Biological Sciences, 2021, 28(1): 64-72. doi: 10.1016/j.sjbs.2020.08.032
    [27] 许益镌, 陆永跃, 黄 俊, 等. 红火蚁自然种群耐寒性的研究[J]. 昆虫学报, 2009, 52(9):974-983. doi: 10.3321/j.issn:0454-6296.2009.09.006

    [28]

    WANG H, ZHANG Q, LIU R, et al. Impacts of changing climate on the distribution of Solenopsis invicta Buren in mainland China: exposed urban population distribution and suitable habitat change[J]. Ecological Indicators, 2022, 139: 108944. doi: 10.1016/j.ecolind.2022.108944
    [29]

    XU Y J, LU Y Y, PAN Z P, et al. Heat tolerance of the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae) in mainland China[J]. Sociobiology, 2009, 54(1): 115-126.
    [30] 燕 迪, 张念念, 李 巧, 等. 红火蚁对无水乙醇的耐受性[J]. 云南大学学报(自然科学版), 2019, 41(4):812-818.

    [31] 陆永跃, 曾 玲, 许益镌, 等. 外来物种红火蚁入侵生物学与防控研究进展[J]. 华南农业大学学报, 2019, 40(5):149-160. doi: 10.7671/j.issn.1001-411X.201905080

    [32] 张红梅, 王 燕, 陈宗麒, 等. 昆明红火蚁种群发生特征[J]. 生物安全学报, 2019, 28(1):29-33. doi: 10.3969/j.issn.2095-1787.2019.01.006

    [33] 李 燕, 刘 萍, 太一梅, 等. 昆明市呈贡区红火蚁工蚁消长动态及防控适期[J]. 环境昆虫学报, 2021, 43(6):1552-1556. doi: 10.3969/j.issn.1674-0858.2021.06.25

    [34] 陈晓燕, 马 平, 李永川, 等. 基于CLIMEX和ArcGIS预测红火蚁在云南的潜在适生区[J]. 植物检疫, 2015, 29(3):34-39.

    [35]

    CHEN S, DING F, HAO M, et al. Mapping the potential global distribution of red imported fire ant (Solenopsis invicta Buren) based on a machine learning method[J]. Sustainability, 2020, 12(23): 10182. doi: 10.3390/su122310182
    [36]

    WANG T, WANG G, INNES J L, et al. ClimateAP: an application for dynamic local downscaling of historical and future climate data in Asia Pacific[J]. Frontiers of Agricultural Science and Engineering, 2017, 4(4): 448. doi: 10.15302/J-FASE-2017172
    [37]

    PATIL I. Visualizations with statistical details: The “ggstatsplot” approach[J]. Journal of Open Source Software, 2021, 6(61): 3167. doi: 10.21105/joss.03167
    [38]

    VINSON S B. Insect life: invasion of the red imported fire ant (Hymenoptera: Formicidae)[J]. American Entomologist, 1997, 43(1): 23-39. doi: 10.1093/ae/43.1.23
    [39]

    STEELE C H, KING J R, BOUGHTON E H, et al. Distribution of the red imported fire ant Solenopsis invicta (Hymenoptera: Formicidae) in central Florida pastures[J]. Environmental Entomology, 2020, 49(4): 956-962. doi: 10.1093/ee/nvaa037
    [40]

    BAIDYA P, BAGCHI S. Influence of human land use and invasive species on beta diversity of tropical ant assemblages[J]. Insect Conservation and Diversity, 2022, 15(1): 73-85. doi: 10.1111/icad.12536
    [41]

    PORTER S D. Impact of temperature on colony growth and developmental rates of the ant, Solenopsis invicta[J]. Journal of Insect Physiology, 1988, 34(12): 1127-1133. doi: 10.1016/0022-1910(88)90215-6
    [42]

    LEBRUN E G, PLOWES R M, GILBERT L E. Imported fire ants near the edge of their range: disturbance and moisture determine prevalence and impact of an invasive social insect[J]. Journal of Animal Ecology, 2012, 81(4): 884-895. doi: 10.1111/j.1365-2656.2012.01954.x
    [43]

    TSCHINKEL W R, KING J R. Ant community and habitat limit colony establishment by the fire ant, Solenopsis invicta[J]. Functional Ecology, 2017, 31(4): 955-964. doi: 10.1111/1365-2435.12794
    [44]

    PETERSON A T, NAKAZAWA Y. Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri[J]. Global Ecology and Biogeography, 2008, 17: 135-144.
    [45]

    KORZUKHIN M D, PORTER S D, THOMPSON L C, et al. Modeling temperature-dependent range limits for the fire ant Solenopsis invicta (Hymenoptera: Formicidae) in the United States[J]. Environmental Entomology, 2001, 30(4): 645-655. doi: 10.1603/0046-225X-30.4.645
    [46]

    RUANO F, TINAUT A, SOLER J J. High surface temperatures select for individual foraging in ants[J]. Behavioral Ecology, 2000, 11(4): 396-404. doi: 10.1093/beheco/11.4.396
    [47]

    HELMS K R, VINSON S B. Surface activity of native ants co-occurring with the red imported fire ant, Solenopsis invicta (Hymenoptera : Formicidae)[J]. Southwestern Entomologist, 2005, 30(4): 223-237.
    [48]

    IPSER R M, GARDNER W A. Abundance, activity, diversity, and species interactions of ground-dwelling ants (Hymenoptera: Formicidae) in open versus canopied habitats in central Georgia (USA)[J]. Journal of Entomological Science, 2020, 55(4): 469-486. doi: 10.18474/0749-8004-55.4.469
    [49]

    PENNISI E. When fire ants move in, others leave[J]. Science, 2000, 289(5477): 231-231. doi: 10.1126/science.289.5477.231
  • [1] 郑华赵宇翔 . 外来有害生物红火蚁风险分析及防控对策. 林业科学研究, 2005, 18(4): 479-483.
    [2] 杨建秀张念念燕迪李巧王庆卢志兴陈又清 . 红火蚁营巢对不同生境土壤氮磷钾含量的影响. 林业科学研究, 2020, 33(2): 161-167. doi: 10.13275/j.cnki.lykxyj.2020.02.020
    [3] 徐正会蒋兴成陈志强吴定敏 . 高黎贡山自然保护区东坡垂直带蚂蚁群落研究. 林业科学研究, 2001, 14(2): 115-124.
    [4] 徐正会吴定敏陈志强蒋兴成 . 高黎贡山自然保护区东坡水平带蚂蚁群落研究. 林业科学研究, 2001, 14(6): 603-609.
    [5] 段加焕徐正会张新民 . 中国盘腹蚁属19种蚂蚁的形态测量学研究. 林业科学研究, 2023, 36(6): 106-114. doi: 10.12403/j.1001-1498.20230060
    [6] 宋扬徐正会李春良张宁张力蒋华莫福燕 . 云南南滚河自然保护区蚁科昆虫区系分析. 林业科学研究, 2013, 26(6): 773-780.
    [7] 刘霞徐正会周雪英于娜娜张成林 . 藏东南德姆拉山西坡及波密河谷蚂蚁群落研究. 林业科学研究, 2011, 24(4): 458-463.
    [8] 付兴飞卢志兴陈又清 . 兼性互利关系影响地表蚂蚁群落多样性的特点. 林业科学研究, 2016, 29(5): 714-718.
    [9] 刘霞徐正会于娜娜张成林周雪英 . 藏东南嘎隆拉和墨脱河谷蚂蚁群落研究. 林业科学研究, 2017, 30(1): 34-40. doi: 10.13275/j.cnki.lykxyj.2017.01.005
    [10] 苏志尧陈北光 . 粤北珍稀濒危植物的区系特点和保护对策. 林业科学研究, 1999, 12(1): 23-30.
    [11] 李昆张春华崔永忠赵一鹤施永泽 . 金沙江干热河谷区退耕还林适宜造林树种筛选研究. 林业科学研究, 2004, 17(5): 555-563.
    [12] 张君明边磊周飞梅王兴梅杨涛张生平王伟宋敏丽许新桥 . 长柄扁桃适宜分布区对气候变化的响应. 林业科学研究, 2022, 35(5): 180-187. doi: 10.13275/j.cnki.lykxyj.2022.005.020
    [13] 姜景民刘昭息吕本树 . 火炬松种源遗传变异分析和适宜种源(区)的确定. 林业科学研究, 1999, 12(5): 485-492.
    [14] 陆元昌张守攻 . 中国天然林保护工程区目前急需解决的技术问题和对策. 林业科学研究, 2003, 16(6): 731-738.
    [15] 郑松发郑德璋廖宝文李云郑馨仁王恭礼 . 红树植物半人工小群落的生态学研究——不间伐的灌木环境对乔木种群的适宜度及群落改造决策. 林业科学研究, 1998, 11(3): 289-294.
    [16] 赵婧文卢志兴陈又清 . 云南绿春县天然次生林和4种人工林树冠层蚂蚁群落多样性. 林业科学研究, 2017, 30(5): 823-830. doi: 10.13275/j.cnki.lykxyj.2017.05.016
    [17] 李昆孙永玉张春华崔永忠 . 金沙江干热河谷区8个造林树种的生态适应性变化. 林业科学研究, 2011, 24(4): 488-494.
    [18] 王祥福郭泉水刘正宇任明波巴哈尔古丽罗正均 . 崖柏群落种子植物区系组成分析. 林业科学研究, 2007, 20(6): 755-762.
    [19] 李因刚柳新红赵勋徐梁黄勇杨成华杨治国 . 越南安息香不同分布区的群落特征. 林业科学研究, 2011, 24(4): 500-504.
    [20] . 西双版纳西南桦人工群落植物区系比较研究. 林业科学研究, 2009, 22(1): -.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  2338
  • HTML全文浏览量:  1099
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-02
  • 录用日期:  2023-02-23
  • 网络出版日期:  2023-09-28
  • 刊出日期:  2023-12-20

红火蚁次适宜区本地蚂蚁群落研究——以昆明为例

    通讯作者: 卢志兴, luzhixing@caf.ac.cn
    作者简介: 高舒桐,从事昆虫生态学研究
  • 1. 中国林业科学研究院高原林业研究所,云南 昆明 650224
  • 2. 国家林业和草原局资源昆虫培育与利用重点实验室,云南 昆明 650224
  • 3. 南京林业大学,江苏 南京 210037
  • 4. 云南林业职业技术学院,云南 昆明 650051
  • 5. 西南林业大学,云南 昆明 650224

摘要:  目的 红火蚁入侵导致了严重的生态问题。温度是制约红火蚁入侵并发展的关键因素。本研究在云南省昆明市不同生境调查蚂蚁群落,旨在揭示红火蚁在次适宜区对本地蚂蚁群落的影响。 方法 于2021年6月和8月,选择云南省昆明市虹桥路和沙朗乡区域5种生境作为研究样地,采用陷阱法调查了不同样地蚂蚁群落,分析不同生境蚂蚁群落多样性、群落结构相似性以及本地蚂蚁群落与红火蚁发生情况关系。 结果 5种生境基于蚂蚁个体数的物种稀疏和预测曲线较平缓,抽样充分;5种生境中共采集蚂蚁2 748头,隶属于4亚科19属34种,其中红火蚁1 920头;桉树林中采集到红火蚁个体数最多(99.2%),其次为荒地(高红火蚁蚁巢密度HW 94.2%,低红火蚁蚁巢密度LW 90.7%),云南松次生林与荒地交错区最少(44.7%);云南松次生林中未采集到红火蚁;桉树林中仅采集到1种本地蚂蚁,荒地中分别采集到3种(HW)和7种(LW),交错区中采集到15种,云南松次生林中采集到18种;云南松次生林和交错区蚂蚁物种丰富度和Chao-1估计值显著高于桉树林,而二者优势度指数则显著低于桉树林;5种生境的蚂蚁群落结构相似性有显著差异,有红火蚁发生的生境的蚂蚁群落结构与云南松次生林不相似;红火蚁蚁巢密度与红火蚁工蚁多度、本地蚂蚁多度、物种丰富度无显著关联;随着红火蚁工蚁多度的增加,本地蚂蚁物种丰富度和多度均呈显著线性下降。 结论 在昆明红火蚁次适宜区,红火蚁多发生于受干扰的开阔生境,特别是稀疏的桉树林,而很少入侵郁闭度高的生境;红火蚁入侵后导致本地蚂蚁群落多样性水平显著降低,改变蚂蚁群落结构;红火蚁入侵后,需要种群发展至较大规模才表现出种群数量优势,进而对本地蚂蚁产生显著影响;减少红火蚁适宜生境,对适宜生境加强巡查,及时对中大型蚁巢开展药剂治理将有利于降低红火蚁发生发展。

English Abstract

  • 红火蚁(Solenopsis invicta Buren)原产南美洲[1],是世界上百种危险入侵生物之一[2-3]。由于其主动攻击性、高繁殖力、强竞争力、广食性、高破坏性的特点,对人体健康和公共设施设备及生态环境造成危害[47]。随着全球运输网络的建立和贸易往来的加速,地理屏障对红火蚁的阻隔作用越来越小。在人类活动参与下,阻止红火蚁扩散变得十分困难[8-9]。目前红火蚁已广泛入侵全球多个国家地区[4, 9-10]。大量研究表明,红火蚁入侵会对本地生物多样性产生威胁,导致本地物种多样性丧失[6, 1114],甚至会破坏生态系统过程[14-15]。红火蚁入侵不同生境后,通过干扰、资源竞争等显著降低区域内蚂蚁群落多样性[1624]

    温度是红火蚁觅食活动的重要影响因子[25],温度和降水决定红火蚁分布格局和能否成功入侵[26]。相比本地蚂蚁,红火蚁具有极强的温度适应能力[27-28],对恶劣环境胁迫具有极高的耐受性[27, 29-30],并且它们在受人类改造或干扰的生境中能够快速定殖和发展,可以实现较大的种群规模[25]。随着红火蚁进一步扩散和适应,其入侵并适应的生境类型更加多样化[31]。然而,在红火蚁发生次适宜区,相关研究还较少,其生物学特性、入侵机制、与本地蚂蚁群落的关系等是否会发生改变等应加强研究和探索。

    云南省于2013年报道有红火蚁入侵,随后在10余个州(市)发现红火蚁疫情,并且呈现加重趋势,对当地生物多样性、人民生产生活以及公众健康造成了严重影响[32-33]。目前昆明市盘龙区、官渡区、五华区、西山区和呈贡区均有红火蚁发生,呈贡区的发生程度较重,多发生于城市绿地、人工林和撂荒地等生境,通过定期开展药剂防治,红火蚁发生发展处于可控状态。昆明地处滇中高原,经模型预测属于红火蚁中低度适生区,可能不适宜红火蚁长期生存繁殖[34-35]。然而,自发现红火蚁近十年来,红火蚁在本地区发生较为频繁,红火蚁显然对昆明地区生态环境产生了一定的适应性。例如,昆明地区红火蚁的活动盛期为6至11月,与广东吴川地区(盛期为5—6月和10—11月)有一定差异[33]。与起源地相比,昆明地区气温相对偏低,红火蚁在温度适宜的季节能够有一定程度发展,但种群发展总体处于较低水平,种群存在较大波动[32]。在此背景下,昆明地区作为红火蚁的次适宜区,红火蚁入侵及其适应过程对本地蚂蚁造成的影响需要进一步关注。本研究选取昆明两地5种生境类型调查蚂蚁群落,比较不同生境中蚂蚁群落多样性、群落结构差异,分析红火蚁发生密度与本地蚂蚁群落关系,探讨2个科学问题:1)次适宜区红火蚁入侵是否对本地蚂蚁群落产生影响,如何影响?2)次适宜区红火蚁入侵对当地蚂蚁群落产生影响的机制是通过蚁巢密度实现还是种群数量实现?为昆明地区红火蚁防控提供理论参考。

    • 研究地位于云南省昆明市虹桥路(25°02′13.66″ N,102°47'28.08" E,海拔1 995 m)和沙朗乡(25°09′59.29″ N,102°40′45.76″ E,海拔2 035 m)两地。该地区2019年的年平均气温为15.6 ℃,年均降雨量850 mm,最冷月平均气温8.6 ℃,极端低温−6.7 ℃[36]。在昆明市虹桥路和沙朗乡发现红火蚁发生,虹桥路红火蚁发生地为废弃工厂荒地及育苗地,场地为废弃状态,裸地覆盖有草本层;沙朗乡红火蚁发生地为废弃建筑用地,种植有绿化苗木,草本层不发达。两地相对封闭,人为活动相对较少,可排除人为干扰对蚂蚁群落的影响。为了避免人工药剂防治造成影响,所选择的调查样地调查前未开展过药剂防治,经与管理部门协商在调查期间未开展红火蚁防治。

      在上述两个地点选取红火蚁发生和未发生区域,选择红火蚁发生的常见生境类型调查蚂蚁群落,每种类型选择2个重复样地,所选取的调查样地间距200 m以上,调查样地信息见表1

      表 1  昆明市虹桥路和沙朗乡蚂蚁调查样地信息

      Table 1.  Information of ant sample sites in Hongqiao and Shalang of Kunming

      项目
      Item
      代码
      Code
      红火蚁蚁巢密度
      Nest density of red fire ant/hm2
      生境类型
      Habitat
      主要特点
      Characteristics
      红火蚁发生地 HW1 20.2 高红火蚁巢密度荒地 红火蚁入侵超过5年,废弃场地,四周有围栏,基本无人为活动干扰,无乔木,阳光能直射地面。
      HW2 17.1
      EP1 7.0 桉树林 红火蚁入侵超过4年,与HW相邻,基本无人为活动干扰,种植桉树,树龄7年以上,郁闭度约30%,大部分区域透射阳光。
      EP2 6.1
      LW1 8.5 低红火蚁巢密度荒地 红火蚁入侵约3年左右,有车辆碾压及堆废弃建筑材料痕迹,人为活动干扰轻微,无乔木,阳光直射地面。
      LW2 11.8
      EC1 11.1 LW和SF交错区 有挖土、踩踏等人为活动痕迹,人为活动干扰轻微,部分区域有乔木荫蔽,地面在部分时段能阳光直射或透射。
      EC2 9.5
      红火蚁未发生 SF1 NA 云南松次生林 云南松林为主的杂木林,有枯落物,有捡菌、踩踏痕迹,人为活动干扰中等,郁闭度约70%,能透射阳光。
      SF2 NA
      注:红火蚁蚁巢密度计算未包括废弃蚁巢,统计蚁巢直径超过5 cm的独立蚁丘并且有红火蚁存活,仅在样地选择首次调查时统计
      Notes: Abandoned ant nests were not included in the nest density calculation of red fire ant. Independent anthills with nests over 5 cm in diameter and surviving red fire ants were counted, only counted in the first survey
    • 分别于2021年6月和8月,选择晴朗天气,采用陷阱法调查了各样地的蚂蚁群落,在每个调查样地中设置5 × 3网格状分布的陷阱15个,间距10 m(红火蚁发生区要避开红火蚁蚁巢),陷阱为口径6 cm、高9 cm的塑料杯。以50 mL 50%乙二醇作为陷阱溶液,设置48 h后收集陷阱中的蚂蚁带回实验室鉴定。根据形态分类学将蚂蚁鉴定到种,不能鉴定到种的,按形态种对待。

    • (1)多样性比较:使用物种丰富度、多度和优势度来度量不同样地中蚂蚁群落多样性水平,使用软件EstimateS中的Chao-1方法估算各样地蚂蚁群落物种丰富度水平,由于数据不满足单因素方差分析要求,因此对不同样地各多样性指数进行非参数检验(Kruskal-Wallis检验)差异比较,并使用Games-Howell方法进行两两样地间的多重比较并绘制箱线图,上述检验比较以及箱线图绘制使用R语言中的ggstatsplot包进行[37]。使用R语言iNEXT在线软件包绘制基于个体数的物种稀疏和预测曲线(Rarefaction and Extrapolation curve,https://chao.shinyapps.io/iNEXTOnline/)。

      (2)群落结构相似性:使用软件PRIMER v7中的非度量多维标度方法(Non-metric Multidimensional Scaling,nMDS)进行不同样地蚂蚁群落结构相似性排序,使用群落结构相似性(ANOSIM)方法检验群落结构相似性差异的显著程度。

      (3)本地蚂蚁与红火蚁发生情况关系:使用R语言中的ggstatsplot包分别绘制蚁巢密度与红火蚁多度、本地蚂蚁多度、本地蚂蚁物种丰富度关系散点图以及红火蚁多度与本地蚂蚁物种丰富度、本地蚂蚁多度关系散点图,使用Pearson相关分析方法分析两两间的关系。

    • 5种类型样地的地表蚂蚁群落基于个体数的物种稀疏和预测曲线如图1。5条曲线的实线部分代表的是实际上抽样的个体总数以及物种总数,而虚线部分则代表的是对个体数和物种数的预测值,当虚线部分趋于平缓时说明抽样比较充分,阴影部分表示置信区间。由图可知,5种类型生境抽样曲线较为平缓,尾部虚线趋于平缓,表明5种类型样地的蚂蚁群落抽样较为充分。

      图  1  不同栖境基于蚂蚁个体数的物种稀疏和预测曲线

      Figure 1.  Rarefaction and extrapolation curves of different habitats based on ant individuals

      在昆明市虹桥路和沙朗乡两地先后2次共采集蚂蚁2 748头,隶属于4亚科19属34种(形态种)。共采集红火蚁1 920头,本地蚂蚁828头。在桉树林中采集到的红火蚁个体数最多,占比为99.2%,仅采到1种本地蚂蚁,其次为荒地(HW中红火蚁个体数占比94.2%,3种本地蚂蚁,LW中红火蚁个体数占比90.7%,7种本地蚂蚁),在云南松次生林与荒地的交错区(以下简称交错区)中采集到的红火蚁个体数最少,占比为44.7%,15种本地蚂蚁。在云南松次生林中采集到本地蚂蚁18种,未采集到红火蚁,本地蚂蚁物种丰富度及多度最多(表2)。

      表 2  昆明市虹桥路和沙朗乡不同生境蚂蚁物种名录及多度

      Table 2.  Ant species and abundance of different habitats in Hongqiao and Shalang of Kunming

      物种名称 SpeciesEPHWLWECSF
      猛蚁亚科 Ponerinae
      环纹大齿猛蚁 Odontomachus circulus 1
      黄足短猛蚁 Brachyponera luteipes 1 1
      扁头猛蚁属待定种1 Ectomomyrmex sp.1 4
      扁头猛蚁属待定种2 Ectomomyrmex sp.2 1
      扁头猛蚁属待定种3 Ectomomyrmex sp.3 1
      切叶蚁亚科 Myrmicinae
      棒刺大头蚁 Pheidole spathifera 13 2
      大头蚁属待定种1 Pheidole sp.1 10
      大头蚁属待定种2 Pheidole sp.2 1 8
      厚结大头蚁 Pheidole nodifera 3
      乌木举腹蚁 Crematogaster ebenina 1 1
      盘腹蚁属待定种1 Aphaenogaster sp.1 3
      阿普特铺道蚁 Tetramorium aptum 18
      草地铺道蚁 Tetramorium caespitum 12
      铺道蚁属待定种1 Tetramorium sp.1 7
      铺道蚁属待定种2 Tetramorium sp.2 1
      疏毛无刺蚁 Kartidris sparsipila 12 361
      裸心结蚁 Cardiocondyla nuda 5 25 1 102
      宽结摇蚁 Erromyrmalati nodis 2
      红火蚁 Solenopsis invicta 624 571 556 169
      臭蚁亚科 Dolichoderinae
      无毛凹臭蚁 Ochetellus glaber 2
      黑头酸臭蚁 Tapinoma melanocephalum 1 2
      酸臭蚁属待定种1 Tapinoma sp.1 1
      蚁亚科 Formicinae
      开普刺结蚁 Lepisiota capensis 4
      角弓背蚁 Camponotus cornis 50 25
      弓背蚁属待定种1 Camponotus sp.1 1
      弓背蚁属待定种2 Camponotus sp.2 11
      弓背蚁属待定种3 Camponotus sp.3 1
      长角立毛蚁 Paratrechina longicornis 1
      林间毛蚁 Lasius hayashi 6
      玉米毛蚁 Lasius alienus 34 74
      毛蚁属待定种1 Lasius sp.1 6
      缅甸尼氏蚁 Nylanderia birmana 9
      黄足尼氏蚁 Nylanderia flavipes 2
      斜结蚁待定种1 Plagiolepis sp.1 1
      物种丰富度 Species richness 2 4 8 16 18
      多度 Abundance 629 606 613 378 522
    • 5种类型生境蚂蚁群落物种丰富度和Chao-1估计值有显著差异(物种丰富度:Kruskal-Wallis χ2 = 15.63,P<0.01;Chao-1估计值:Kruskal-Wallis χ2 = 15.62,P<0.01),其中,云南松次生林和交错区的蚂蚁物种丰富度和Chao-1估计值均显著高于桉树林(图2a,b)。5种类型样地蚂蚁群落多度无显著差异(图2c)。5种类型样地蚂蚁群落的优势度有显著差异(Kruskal-Wallis χ2 = 16.79,P<0.01),其中,桉树林、高红火蚁蚁巢密度荒地和低红火蚁蚁巢密度荒地的蚂蚁优势度显著高于交错区(图2d)。

      图  2  不同类型样地蚂蚁群落多样性指数比较箱线图

      Figure 2.  Boxplots of ant community diversity indices among different sites

    • 5种类型生境的蚂蚁群落结构相似性有显著差异(Global Test Sample statistic R =0.81,P<0.01),云南松次生林的蚂蚁群落结构明显不同于红火蚁发生生境。在红火蚁发生生境中,高密度红火蚁发生样地的蚂蚁群落结构与桉树林相似;交错区的蚂蚁群落结构与高密度红火蚁发生样地和桉树林不相似;低密度红火蚁发生样地的蚂蚁群落结构介于上述二者之间(图3)。

      图  3  不同生境蚂蚁群落结构非度量多维度排序

      Figure 3.  nMDS ordination of ant community structure among different habitats

    • 红火蚁蚁巢密度与红火蚁多度、本地蚂蚁多度和本地蚂蚁物种丰富度均无显著关联。随着红火蚁蚁巢密度的增加,红火蚁多度无显著增加(图4a);随着红火蚁蚁巢密度的增加,本地蚂蚁多度及物种丰富度未发生明显变化(图4b,c)。

      图  4  红火蚁蚁巢密度与蚂蚁多度及物种丰富度线性回归模型

      Figure 4.  Liner regression models of density of S. invicta nest between ant abundance and species richness

    • 随着红火蚁多度的增加,本地蚂蚁物种丰富度呈显著线性下降(t = −3.36,P<0.01),二者为中等程度负相关(Pearson相关系数=−0.67)(图5a);本地蚂蚁多度随着红火蚁多度的增加呈显著线性下降(t = −2.66,P<0.05),二者也为中等程度负相关(Pearson相关系数=−0.58)(图5b)。

      图  5  红火蚁多度与本地蚂蚁多度及物种丰富度线性回归模型

      Figure 5.  Liner regression models of S. invicta abundance between local ant abundance and species richness

    • 红火蚁成功入侵后,迅速成为入侵地的优势类群,导致本地生物多样性下降[6,13],而对无脊椎动物的影响可能更加深远,这些类群的变化可能产生级联效应而改变生态系统结构和功能[38]。在适宜红火蚁生存的热量充足的区域,红火蚁入侵导致本地蚂蚁多样性水平显著降低[18,21,39-40],但这种影响程度还受到生境质量的影响,未受干扰的生境中存在更多的本地物种与红火蚁竞争资源,捕食红火蚁生殖蚁导致入侵失败[41],在入侵初期红火蚁种群增长较慢,但随着入侵时间的增加而加快,数月内可成为优势种,最终替代本地蚂蚁[19]。与红火蚁在适宜区短期内严重影响本地蚂蚁群落不同,本研究中,红火蚁在次适宜区的入侵虽然也对本地蚂蚁群落产生影响,但影响的程度相对偏弱,这种影响会随着红火蚁种群发展而进一步增加。红火蚁蚁巢密度高的生境中本地蚂蚁物种丰富度明显降低,桉树林中仅采集到1种本地蚂蚁,在高密度红火蚁蚁巢样地中采集到本地蚂蚁3种,在低密度红火蚁蚁巢样地中采集到本地蚂蚁7种;在交错区采集到本地蚂蚁15种;有红火蚁活动的生境蚂蚁群落结构明显不同于无红火蚁活动的生境。桉树林中采集到的红火蚁个体数最多,其次为荒地类型,高密度红火蚁蚁巢样地与低密度红火蚁蚁巢样地采集到的红火蚁个体数相差不大,交错区采集到的红火蚁个体数最少。在生境受到干扰的初期(如耕作或割草),红火蚁种群数量先下降,在随后的3~5 a呈指数增长[39,42],同时,本地蚂蚁在受干扰生境中的恢复能力要远远弱于红火蚁,很难与红火蚁抗衡[39,43]。本研究中的样地红火蚁入侵均超过3 a以上,但这些生境中仍然有本地蚂蚁共存,说明红火蚁在次适宜区的入侵性存在波动。温度和降雨量对于红火蚁的分布起着重要的作用[26,35,44 ],红火蚁种群生长的最适宜温度是24~36 ℃之间,温度低于24 ℃种群停止生长[41],极端低温或高温会严重限制种群的发展[45],同时温度决定着红火蚁觅食活动。地表温度、蚂蚁活动时间、空间是决定红火蚁影响本地蚂蚁的重要因素[46-47]

      红火蚁主要发生在开阔和经常受到干扰的地区,很少选择有乔木荫蔽的生境。在有乔木荫蔽的生境中与红火蚁竞争的蚂蚁种类数也明显较多[48]。本研究也得到了一致的结果,在无乔木的荒地中,本地蚂蚁的物种丰富度显著低于有乔灌木的交错区和云南松次生林。虽然红火蚁对开放生境和荫蔽生境的选择偏好原因还较少被关注,但可能是因为有乔木荫蔽生境中,红火蚁的生殖蚁更容易被其他蚂蚁捕食,或可能与昆明地区有乔木荫蔽生境中,红火蚁获得的太阳辐射热量减少,地表空气和土壤温度偏低有关。在桉树林中,与红火蚁竞争的本地蚂蚁种类少,并且温度适宜,红火蚁外出活动频繁。在荒地中虽然红火蚁蚁巢密度高,但晴朗天气下,可能直射阳光导致过高的地表气温和土壤温度不利于红火蚁外出觅食。

      红火蚁成功入侵的优势是在短期内种群指数增长,以数量优势占据资源,导致本地蚂蚁无法生存[11]。在有乔木荫蔽的生境中,红火蚁与本地蚂蚁发生更频繁、强度更大的资食物源竞争,红火蚁增加觅食工蚁数量提高成功率[48-49]。本研究发现,红火蚁对本地蚂蚁的影响也是通过种群数量实现。随着红火蚁多度的增加,本地蚂蚁物种丰富度和多度均为显著的线性下降,说明红火蚁主要通过种群数量优势来增加资源获取的成功率。一般来说,红火蚁外出觅食工蚁的数量会随着蚁巢密度的增加而显著增加,但本研究中红火蚁外出觅食工蚁数量与蚁巢密度未存在显著的线性关系。同时,本地蚂蚁群落多样性与红火蚁蚁巢密度也没有显著的关联,说明在次适宜区红火蚁的种群优势需要发展至一定规模后才能对本地蚂蚁产生显著的影响。例如,交错区红火蚁个体数占比44.7%,红火蚁并没有展现出利用种群数量优势提高竞争力,大量的本地蚂蚁与红火蚁共存,可能是次适宜区红火蚁种群发展波动情况下,其竞争力与原发生地相比有一定程度下降。

    • 在昆明红火蚁次适宜区,红火蚁多入侵受干扰、开阔、日照充足的生境。随着红火蚁种群数量的增加,本地蚂蚁群落的物种丰富度和多度显著降低,并改变蚂蚁群落结构,但红火蚁在次适宜区对本地蚂蚁群落的影响存在波动,即红火蚁种群数量需达到一定的规模才能产生优势。在次适宜区虽然有红火蚁发生,相对于原发生地和热量充足地区,其种群发展仍然受到温度制约,特别是冬季,红火蚁仅在太阳照射区域有少量活动(野外观察),红火蚁在竞争中的种群优势也受到限制。在防治方面,建议通过适宜的造林措施,乔灌结合,合理密植,减少红火蚁适宜生境。对于有少量蚁巢分布的稀疏人工林,应加强巡查,在夏秋季节发现中大型蚁巢应及时药剂防治,减少婚飞生殖蚁,同时,在秋冬季节注意背风、向阳荒坡地,发现蚁巢及时治理。

参考文献 (49)

目录

    /

    返回文章
    返回