留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲酸钾抑制蒙脱石水化机理的分子动力学模拟

刘星雨 马超 谢龙龙 陈妍 任文东 谷文

刘星雨,马超,谢龙龙,等. 甲酸钾抑制蒙脱石水化机理的分子动力学模拟[J]. 钻井液与完井液,2022,39(4):415-422 doi: 10.12358/j.issn.1001-5620.2022.04.003
引用本文: 刘星雨,马超,谢龙龙,等. 甲酸钾抑制蒙脱石水化机理的分子动力学模拟[J]. 钻井液与完井液,2022,39(4):415-422 doi: 10.12358/j.issn.1001-5620.2022.04.003
LIU Xingyu, MA Chao, XIE Longlong, et al.Molecular dynamics simulation of potassium formate’s ability to inhibit hydration of montmorillonite[J]. Drilling Fluid & Completion Fluid,2022, 39(4):415-422 doi: 10.12358/j.issn.1001-5620.2022.04.003
Citation: LIU Xingyu, MA Chao, XIE Longlong, et al.Molecular dynamics simulation of potassium formate’s ability to inhibit hydration of montmorillonite[J]. Drilling Fluid & Completion Fluid,2022, 39(4):415-422 doi: 10.12358/j.issn.1001-5620.2022.04.003

甲酸钾抑制蒙脱石水化机理的分子动力学模拟

doi: 10.12358/j.issn.1001-5620.2022.04.003
详细信息
    作者简介:

    刘星雨,1999年生,在读硕士研究生,研究方向为钻井液技术。电话15330605768 ;E-mail:202072354@yangtzeu.edu.cn

    通讯作者:

    马超,教授,四川大学高分子科学与工程专业博士,研究方向为油田用高分子材料。 E-mail:500526@yangtzeu.edu.cn

  • 中图分类号: TE254

Molecular Dynamics Simulation of Potassium Formate’s Ability to Inhibit Hydration of Montmorillonite

  • 摘要: 在盐膏地层或者泥页岩地层钻井过程中,钻遇的地层含有大量的蒙脱石,蒙脱石是典型的水化膨胀性矿物,当钻井液滤液进入蒙脱石含量较高的地层会因水化膨胀作用导致井壁失稳,发生卡钻、井眼缩径、井塌等井下复杂事故。有机盐钻井液的主要成分是含有抑制作用强的甲酸钾,成为目前钻复杂井段的重要水基钻井液体系。为了深入揭示有机盐钻井液中的主要抑制剂甲酸钾抑制蒙脱石水化的机理,采用分子动力学的方法,从分子角度研究其抑制机理。通过建立甲酸钾和蒙脱石的模型,计算两者的相互作用。研究发现在甲酸钾溶液中,电离出的甲酸根主要偏向作用于层间水,且能与水分子形成氢键,电离出的钾离子会吸附在蒙脱石表面,与蒙脱石表面作用,降低蒙脱石的Zeta电位,当质量分数大于一定量时,钾离子对蒙脱石表面作用饱和并开始向层间扩散。通过模拟发现,低浓度的甲酸钾有利于蒙脱石力学性质稳定,随着其浓度继续增加,有利于抑制水分子扩散,而蒙脱石的杨氏模量、剪切模量略微降低,泊松比上升,当浓度大于一定量后,其抑制性趋于稳定,蒙脱石力学性质趋于稳定。模拟认为钻井液中甲酸钾最佳质量分数(相对于水)范围应在32.57%~34.92%。

     

  • 图  1  不同水分子数目下蒙脱石的层间距

    图  2  晶格取代后蒙脱石模型

    图  3  甲酸钾分子模型

    图  4  动态模拟中蒙脱石体系的构象

    注:(a),(b)中标黄的以及(c),(d)中紫色球形原子是钾离子,(a),(b),(d)中层间紫色小点为钠离子红色,表示氧原子,白色表示氢原子

    图  5  甲酸根离子、钠离子和钾离子与水中氢原子、氧原子的径向函数

    图  6  甲酸根离子、钾离子与蒙脱石层面氧的径向函数

    图  7  不同浓度甲酸钾下Na+、 HCOO、K+的配位数

    图  8  不同浓度甲酸钾下水分子的扩散系数

    图  9  不同浓度甲酸钾下蒙脱石体系的力学参数变化

    表  1  甲酸钾、甲酸根、钾离子对水和蒙脱石表面非键作用能

    体系中甲酸钾个数水化程度E(J-M)/
    kcal/mol
    E(J-W) /
    kcal/mol
    E(JS-M) /
    kcal/mol
    E(JS-W) /
    kcal/mol
    E(K-M) /
    kcal/mol
    E(K-W) /
    kcal/mol
    1二层饱和水7.304149.932−59.89073.63467.19576.298
    三层饱和水7.581110.862−16.60823.47624.18887.385
    2二层饱和水41.654395.678−79.793112.795121.447282.883
    三层饱和水10.255311.593−32.674105.17342.929206.420
    3二层饱和水52.360424.970−151.526118.501203.886306.469
    三层饱和水14.143446.982−52.942187.00667.085259.976
    4二层饱和水89.367470.437−166.687125.758256.054344.679
    三层饱和水13.852702.646−70.085408.68983.937293.957
    6二层饱和水103.087485.472−255.451186.289358.538299.183
    三层饱和水112.1121092.442−76.594481.304188.706611.138
    8二层饱和水109.289587.242−262.118100.818371.407486.424
    三层饱和水142.8501130.380−28.862501.557171.712628.823
    下载: 导出CSV
  • [1] 叶艳,安文华,尹达,等. 高密度甲酸盐钻井液配方优选及其性能评价[J]. 钻井液与完井液,2014,31(1):37-39. doi: 10.3969/j.issn.1001-5620.2014.01.010

    YE Yan, AN Wenhua, YIN Da, et al. Formulation optimizing and performance evaluation of high-density formate drilling fluid[J]. Drilling Fluid & Completion Fluid, 2014, 31(1):37-39. doi: 10.3969/j.issn.1001-5620.2014.01.010
    [2] 荆鹏. 甲酸钾溶液作内相的油基钻井液[J]. 钻井液与完井液,2014,31(2):21-23. doi: 10.3969/j.issn.1001-5620.2014.02.006

    JING Peng. Oil base drilling fluid with potassium formate solution as water phase[J]. Drilling Fluid & Completion Fluid, 2014, 31(2):21-23. doi: 10.3969/j.issn.1001-5620.2014.02.006
    [3] 刘自明,苗海龙,王冲敏,等. 甲酸钾对PDF-THERM钻井液的影响[J]. 钻井液与完井液,2014,31(5):32-34.

    LIU Ziming, MIAO Hailong, WANG Chongmin, et al. Study on the effect of potassium formate on PDF-THERM drilling fluid[J]. Drilling Fluid & Completion Fluid, 2014, 31(5):32-34.
    [4] SKIPPER N T, SPOSITO G, CHANG F R C. MONTE CARLO SIMULATION OF INTERLAYER MOLECULAR STRUCTURE IN SWELLING CLAY MINERALS. 1. METHODOLOGY[J]. Clays and Clay Miner, 1995, 43(3):285-293. doi: 10.1346/CCMN.1995.0430303
    [5] CHANG F R C, SKIPPER N T, SPOSITO G. Computer Simulation of Interlayer Molecular Structure in Sodium Montmorillonite Hydrates[J]. Langmuir, 1995, 11:2734-2741. doi: 10.1021/la00007a064
    [6] 王进. 蒙脱石层间结构的分子力学和分子动力学模拟研究[D]. 太原理工大学, 2005

    WANG Jin. Molecular mechanics and molecular dynamics simulation studies of interlayer structure in montmorillonites[D]. Taiyuan University of Technology, 2005.
    [7] 李小迪. 典型页岩抑制剂抑制蒙脱石水化机理的分子模拟[D]. 中国石油大学(华东), 2016

    LI Xiaodi. Molecular simulation on montmorillonite hydration inhibition mechanism of typical shale inhibitors[D]. China University of Petroleum(East China), 2016.
    [8] 黄小娟,徐加放,丁廷稷,等. 有机胺抑制蒙脱石水化机理的分子模拟[J]. 石油钻采工艺,2017,39(4):442-448. doi: 10.13639/j.odpt.2017.04.009

    HUANG Xiaojuan, XU Jiafang, DING Tingji, et al. Molecular simulation on the inhibition mechanism of organic amine to montmorillonite hydration[J]. Oil Drilling & Production Technology, 2017, 39(4):442-448. doi: 10.13639/j.odpt.2017.04.009
    [9] 徐加放,顾甜甜,沈文丽,等. 无机盐对蒙脱石弹性力学参数影响的分子模拟与实验研究[J]. 中国石油大学学报(自然科学版),2016,40(2):83-90.

    XU Jiafang, GU Tiantian, SHEN Wenli, et al. Influence simulation of inorganic salts on montmorillonite elastic mechanical parameters and experimental study[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(2):83-90.
    [10] SKIPPER N T, SPOSITO G, CHANG F R C. Monte carlo simulation of interlayer molecular structure in swelling clay minerals. 1. methodology[J]. Clays and Clay Miner, 1995, 43(3):285-293. doi: 10.1346/CCMN.1995.0430303
    [11] 罗亚飞. Na-蒙脱石表面水化抑制机理的分子模拟[D]. 西南石油大学, 2019

    LUO Yafei. Molecular simulation of surface hydration inhibition mechanism of Na-montmorillonite[D]. Southwest Petroleum University, 2019.
    [12] CYGAN R T , LIANG J J , KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B, 2004, 108(4):1255-1266. doi: 10.1021/jp0363287
    [13] HILL, R. The Elastic Behaviour of a Crystalline Aggregate[J]. Proceedings of the Physical Society, 1952, 65(5):349-354. doi: 10.1088/0370-1298/65/5/307
    [14] 张亚云,陈勉,邓亚,等. 温压条件下蒙脱石水化的分子动力学模拟[J]. 硅酸盐学报,2018(10):22. doi: 10.14062/j.issn.0454-5648.2018.10.21

    ZHANG Yayun, CHEN Mian, DENG Ya, et al. Molecular Dynamics Simulation of Temperature and Pressure Effects on Hydration Characteristics of Montmorillonites[J]. Journal of the Chinese Ceramic Society, 2018(10):22. doi: 10.14062/j.issn.0454-5648.2018.10.21
    [15] 袁俊生,包捷. 钾、钠、氯离子水化现象的分子动力学模拟[J]. 计算机与应用化学,2009,26(10):1295-1299. doi: 10.3969/j.issn.1001-4160.2009.10.016

    YUAN JunSheng, BAO Jie. Molecular dynamics simulation of K+, Na+ and Cl- hydration[J]. Computers and Applied Chemistry, 2009, 26(10):1295-1299. doi: 10.3969/j.issn.1001-4160.2009.10.016
    [16] 郭丽萍,费香鹏,曹园章,等. 氯离子与硫酸根离子在水化硅酸钙表面竞争吸附的分子动力学研究[J]. 材料导报,2021,35(8):8034-8041.

    GUO Liping, FEI Xiangpeng, CHAO Yuanzhang, et al. Molecular kinetics of competitive adsorption of chloride and sulphate ions on C-S-H surface[J]. Materials Reports, 2021, 35(8):8034-8041.
    [17] 叶艳,安文华,尹达,等. 甲酸盐溶液对饱和盐水磺化钻井液的适应性评价[J]. 石油与天然气化工,2013,42(6):614-618. doi: 10.3969/j.issn.1007-3426.2013.06.014

    YE Yan, AN Wenhua, YIN Da, et al. Adaptability evaluation of formate solution to saturated brine sulfonated drilling fluids[J]. Chemical Engineering of Oil & Gas, 2013, 42(6):614-618. doi: 10.3969/j.issn.1007-3426.2013.06.014
    [18] TANG Yongming,ZHANG Fan, CAO Ziyi , et al. Crystallization of CaCO3 in the presence of sulfate and additives: Experimental and molecular dynamics simulation studies[J]. Journal of Colloid and Interface Science, 2012(377):430-437.
    [19] 李杰,林紫嫣. 基于分子模拟方法的HEDP阻垢机理研究[J]. 同济大学学报(自然科学版),2006(4):518-522. doi: 10.3321/j.issn:0253-374X.2006.04.019

    LI Jie, LIN Ziyan. Research of the HEDP inhibition based on molecular modeling[J]. Journal of Tongji University (Natural Science), 2006(4):518-522. doi: 10.3321/j.issn:0253-374X.2006.04.019
    [20] 钟汉毅,黄维安,邱正松,等. 聚胺与甲酸盐抑制性对比实验研究[J]. 断块油气田,2012,19(4):508-512. doi: 10.6056/dkyqt201204025

    ZHONG Hanyi, HUANG Weian, QIU Zhengsong, et al. Experimental study of inhibition comparison between polyamine and formates[J]. Fault-Block Oil & Gas Field, 2012, 19(4):508-512. doi: 10.6056/dkyqt201204025
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  562
  • HTML全文浏览量:  236
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-06
  • 修回日期:  2022-02-20
  • 录用日期:  2022-02-28
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回