留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超临界CO2压裂井筒传热规律

郭兴 孙晓 穆景福 乔红军 罗攀 李珮

郭兴,孙晓,穆景福,等. 超临界CO2压裂井筒传热规律[J]. 钻井液与完井液,2021,38(6):782-789 doi: 10.12358/j.issn.1001-5620.2021.06.020
引用本文: 郭兴,孙晓,穆景福,等. 超临界CO2压裂井筒传热规律[J]. 钻井液与完井液,2021,38(6):782-789 doi: 10.12358/j.issn.1001-5620.2021.06.020
GUO Xing, SUN Xiao, MU Jingfu, et al.Heat transfer in wellbores fractured with supercritical CO2 fracturing fluid[J]. Drilling Fluid & Completion Fluid,2021, 38(6):782-789 doi: 10.12358/j.issn.1001-5620.2021.06.020
Citation: GUO Xing, SUN Xiao, MU Jingfu, et al.Heat transfer in wellbores fractured with supercritical CO2 fracturing fluid[J]. Drilling Fluid & Completion Fluid,2021, 38(6):782-789 doi: 10.12358/j.issn.1001-5620.2021.06.020

超临界CO2压裂井筒传热规律

doi: 10.12358/j.issn.1001-5620.2021.06.020
基金项目: 陕西省创新能力支撑计划项目“CO2压裂井筒温压及地层波及规律研究”(2019KJXX-023);国家科技重大专项“延安地区陆相页岩气勘探开发关键技术”课题四“非均质陆相页岩气储层压裂改造配套工艺技术”(2017ZX05039-004)
详细信息
    作者简介:

    郭兴,工程师,1991年生,毕业于中国石油大学(华东)油气井工程专业,现在主要从事CO2压裂工艺技术和超临界CO2钻完井基础理论研究。电话 18049604069;E-mail:1174508734@qq.com

  • 中图分类号: TE357

Heat Transfer in Wellbores Fractured with Supercritical CO2 Fracturing Fluid

  • 摘要: 为了优化超临界CO2压裂工艺技术和施工参数,考虑到井筒温压变化与CO2物性之间的相互影响与作用,基于CO2物性模型,建立CO2压裂井筒压降、传热耦合数学模型,通过现场压裂施工数据验证模型准确性,进行耦合计算和井筒传热规律分析。研究表明:不同排量下,油管内温度分布均明显低于地层原始温度,且随着排量增加,井筒温度出现了先减小后增加的变化趋势;井底温度随着注入温度的增大而增大,且较高排量下,井底温度随注入温度的变化更加显著;井口压力增加对井底温度的影响很小,在工程上可以忽略其影响;不同排量下,井底温度均随着注入时间的增大而降低,且降幅随着注入时间增大逐渐减小;加入降阻剂会显著降低油管内温度,且不同排量下,降阻后井筒温度差异较小。该研究对于CO2压裂设计优化及现场施工具有重要指导意义。

     

  • 图  1  计算框架示意图

    图  2  液态CO2压裂井井底温度曲线

    图  3  不同CO2注入排量下的井筒温度剖面

    图  4  不同CO2注入温度下的井筒温度剖面

    图  5  不同排量下CO2注入温度对井底温度的影响

    图  6  不同排量下井口压力对井底温度影响变化

    图  7  不同排量下CO2注入时间对井底温度的影响

    图  8  添加减阻剂前后不同CO2排量下的井筒温度剖面

  • [1] 金之钧,白振瑞,高波,等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质,2019,40(3):5-12.

    JIN Zhijun, BAI Zhenrui, GAO Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3):5-12.
    [2] 孙焕泉,蔡勋育,周德华,等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探,2019,24(5):569-575. doi: 10.3969/j.issn.1672-7703.2019.05.004

    SUN Huanquan, CAI Xunyu, ZHOU Dehua, et al. Practice and prospect of Sinopec shale oil exploration[J]. China Petroleum Exploration, 2019, 24(5):569-575. doi: 10.3969/j.issn.1672-7703.2019.05.004
    [3] LEE J Y, WEINGARTEN M, GE S. Induced seismicity: the potential hazard from shale gas development and CO2, geologic storage[J]. Geosciences Journal, 2016, 20(1):137-148. doi: 10.1007/s12303-015-0030-5
    [4] 韩布兴. 超临界流体科学与技术[M]. 北京: 中国石化出版社, 2005.

    HAN Buxing. Science and technology of supercritical fluid[M]. Beijing: China Petrochemical Press, 2005.
    [5] 李小江,李根生,王海柱,等. 超临界CO2压裂井筒流动模型及耦合求解[J]. 中国石油大学学报(自然科学版),2018,42(226):93-100.

    LI Xiaojiang, LI Gensheng, WANG Haizhu, et al. A wellbore flow model and coupling solution for supercritical CO2 fracturing[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(226):93-100.
    [6] 李海涛,杨帆,温丽娟. 小直径套管压裂工艺技术的应用[J]. 非常规油气,2018(3):74-79. doi: 10.3969/j.issn.2095-8471.2018.03.012

    LI Haitao, YANG Fan, WEN Lijuan. Application of small diameter casing fracturing technology[J]. Unconventional Oil & Gas, 2018(3):74-79. doi: 10.3969/j.issn.2095-8471.2018.03.012
    [7] GUO X, NI H, LI M, et al. Experimental study on the influence of supercritical carbon dioxide soaking pressure on the mechanical properties of shale[J]. Indian Geotechnical Journal, 2018, 48(2):384-391. doi: 10.1007/s40098-017-0289-8
    [8] 刘秉谦,张遂安,李宗田,等. 压裂新技术在非常规油气开发中的应用[J]. 非常规油气,2015(2):78-86. doi: 10.3969/j.issn.2095-8471.2015.02.016

    LIU Bingqian, ZHANG Suian, LI Zongtian, et al. New stimulation technology for unconventional oil & gas development[J]. Unconventional Oil & Gas, 2015(2):78-86. doi: 10.3969/j.issn.2095-8471.2015.02.016
    [9] 杨洪,李彦林,郭庆,等. VF-8清洁二氧化碳泡沫前置液压裂工艺在延长气井的应用[J]. 非常规油气,2015(4):53-57. doi: 10.3969/j.issn.2095-8471.2015.04.009

    YANG Hong, LI Yanlin, GUO Qing, et al. Application of VF-8 clean CO2 foam pad fluid fracturing technology to Yanchang gas wells[J]. Unconventional Oil & Gas, 2015(4):53-57. doi: 10.3969/j.issn.2095-8471.2015.04.009
    [10] 王翠翠. 二氧化碳无水蓄能压裂参数优化[J]. 钻井液与完井液,2018,35(4):102-107. doi: 10.3969/j.issn.1001-5620.2018.04.019

    WANG Cuicui. Parameter optimization for CO2 water-free energy-storing fracturing[J]. Drilling Fluid & Completion Fluid, 2018, 35(4):102-107. doi: 10.3969/j.issn.1001-5620.2018.04.019
    [11] 王香增,孙晓,罗攀,等. 非常规油气CO2压裂技术进展及应用实践[J]. 岩性油气藏,2019,31(2):4-10.

    WANG Xiangzeng, SUN Xiao, LUO Pan, et al. Progress and application of CO2 fracturing technology for unconventional oil and gas[J]. Lithologic Reservoirs, 2019, 31(2):4-10.
    [12] 张红妮,陈井亭. 低渗透油田蓄能整体压裂技术研究—以吉林油田外围井区为例[J]. 非常规油气,2015(5):55-60. doi: 10.3969/j.issn.2095-8471.2015.05.010

    ZHANG Hongni, CHEN Jingting. Insights into energy storage bulk fracturing technology for low-permeability oilfields—a case study of peripheral wellblock of Jilin oilfield[J]. Unconventional Oil & Gas, 2015(5):55-60. doi: 10.3969/j.issn.2095-8471.2015.05.010
    [13] 孙晓,吴金桥,梁小兵,等. 液态CO2压裂井筒流动摩阻计算[J]. 大庆石油地质与开发,2016,35(5):96-99.

    SUN Xiao, WU Jinqiao, LIANG Xiaobing, et al. Friction resistance calculation of the borehole flow of liquid CO2 fractured wells[J]. Petroleum Geology & Oilfield Development in Daqing, 2016, 35(5):96-99.
    [14] 官兵,李士斌,张立刚,等. 基于多场耦合效应的水平井压裂应力场分析[J]. 非常规油气,2017(3):103-109. doi: 10.3969/j.issn.2095-8471.2017.03.018

    GUAN Bing, LI Shibin, ZHANG Ligang, et al. Analysis of stress field of horizontal well fracturing based on multi field coupling effect[J]. Unconventional Oil & Gas, 2017(3):103-109. doi: 10.3969/j.issn.2095-8471.2017.03.018
    [15] 李小江. 多场耦合下二氧化碳压裂流动传热与岩石损伤特性研究[D]. 北京: 中国石油大学(北京), 2018.

    LI Xiaojiang. Research on flow-heat transfer and rock damage during CO2 fracturing based on multiphysics coupling[D]. Beijing: China University of Petroleum (Beijing), 2018.
    [16] 倪红坚,郭兴,丁璐,等. 超临界二氧化碳浸泡对页岩力学性质影响的实验[J]. 中国石油大学学报(自然科学版),2019,43(2):77-84.

    NI Hongjian, GUO Xing, DING Lu, et al. Experiment on the influence of supercritical carbon dioxide soaking on the mechanical properties of shale[J]. Journal of China University of Petroleum(Edition of Natrural Science), 2019, 43(2):77-84.
    [17] 郭建春,曾冀. 超临界二氧化碳压裂井筒非稳态温度-压力耦合模型[J]. 石油学报,2015,036(2):203-209.

    GUO Jianchun, ZENG Yi. A coupling model for wellbore transient temperature and pressure of fracturing with supercritical carbon dioxide[J]. Acta Petrolei Sinica, 2015, 036(2):203-209.
    [18] 程宇雄,李根生,王海柱,等. 超临界二氧化碳喷射压裂井筒流体相态控制[J]. 石油学报,2014,35(6):1182-1187. doi: 10.7623/syxb201406016

    CHENG Yuxiong, LI Gensheng, WANG Haizhu, et al. Phase control wellbore fluid during supercritical CO2 jet fracturing[J]. Acta Petrolei Sinica, 2014, 35(6):1182-1187. doi: 10.7623/syxb201406016
    [19] 卢义玉,廖引,汤积仁,等. 页岩超临界CO2压裂起裂压力与裂缝形态试验研究[J]. 煤炭学报,2018,43(1):175-180.

    LU Yiyu, LIAO Yin, TANG Jiren, et al. Experimental study on fracture initiation pressure and morphology in shale using supercritical CO2 fracturing[J]. Journal of China Coal Society, 2018, 43(1):175-180.
    [20] SPAN R, WAGNER W. A new equation of state for carbon dioxide covering the fluid region from the triple-toint temperature to 1100 K at pressures up to 800 MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6):1509-1596. doi: 10.1063/1.555991
    [21] VESOVIC V, WAKEHAM W A, OLCHOWY G A, et al. The transport properties of carbon dioxide[J]. Journalof Physical and Chemical Reference Data, 1990, 19(3):763-808. doi: 10.1063/1.555875
    [22] FENGHOUR A, WAKEHAMW A, VESOVIC V. The viscosity of carbon dioxide[J]. Journal of Physical and Chemical Reference Date, 1998, 27:31-44. doi: 10.1063/1.556013
    [23] 汪志明, 崔海清, 何光渝. 流体力学[M]. 北京: 石油工业出版社, 2006.

    WANG Zhiming, CUI Haiqing, HE Guangyu. Fluid Mechanics[M]. Beijing: Petroleum Industry Press, 2006.
    [24] HASAN A R, KABIR C S. Wellbore heat-transfer modeling and applications[J]. Journal of Petroleum Science and Engineering, 2012, 86-87:127-136. doi: 10.1016/j.petrol.2012.03.021
    [25] LI X, LI G, WANG H, et al. A unified model for wellbore flow and heat transfer in pure CO2 injection for geological sequestration, EOR and fracturing operations[J]. International Journal of Greenhouse Gas Control, 2017, 57:102-115. doi: 10.1016/j.ijggc.2016.11.030
  • 加载中
图(8)
计量
  • 文章访问数:  548
  • HTML全文浏览量:  208
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-30
  • 录用日期:  2021-04-22
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回