留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同生境来源硝化细菌群对氨氮的去除性能

杜杭涛 徐睿 徐慧 施文卿 邓皓元 何俊龙 朱琳

杜杭涛,徐睿,徐慧,等.不同生境来源硝化细菌群对氨氮的去除性能[J].环境工程技术学报,2022,12(1):81-91 doi: 10.12153/j.issn.1674-991X.20210380
引用本文: 杜杭涛,徐睿,徐慧,等.不同生境来源硝化细菌群对氨氮的去除性能[J].环境工程技术学报,2022,12(1):81-91 doi: 10.12153/j.issn.1674-991X.20210380
DU H T,XU R,XU H,et al.Ammonia nitrogen removal by nitrifying bacteria from different habitats[J].Journal of Environmental Engineering Technology,2022,12(1):81-91 doi: 10.12153/j.issn.1674-991X.20210380
Citation: DU H T,XU R,XU H,et al.Ammonia nitrogen removal by nitrifying bacteria from different habitats[J].Journal of Environmental Engineering Technology,2022,12(1):81-91 doi: 10.12153/j.issn.1674-991X.20210380

不同生境来源硝化细菌群对氨氮的去除性能

doi: 10.12153/j.issn.1674-991X.20210380
基金项目: 国家自然科学基金项目(41701112);南京信息工程大学启动经费项目(20181015)
详细信息
    作者简介:

    杜杭涛(2001—),男,研究方向为生物脱氮,1379853645do@gmail.com

    通讯作者:

    朱琳(1988—),女,讲师,博士,研究方向为水体氮循环, zhulin0510420@126.com

  • 中图分类号: X172

Ammonia nitrogen removal by nitrifying bacteria from different habitats

  • 摘要: 硝化细菌是微生物脱氮的关键功能菌群之一,筛选优质硝化细菌对于强化微生物脱氮具有重要意义。将河流沉积物、土壤自然环境和市场售人为环境3种生境来源的硝化细菌功能进行比较研究,并利用分子生物学手段分析了硝化细菌群落结构。结果表明,沉积物生境中硝化细菌的活性以及耐氨氮、pH和盐度等环境因子的能力高于土壤和市售硝化细菌。利用MPN-PCR法和克隆文库分析法对各生境硝化细菌丰度及群落结构组成进行分析,发现沉积物生境中硝化螺旋菌(Nitrospira)生物量较高,促使该生境硝化细菌氨氮去除率较高。沉积物生境中硝化细菌的高耐氨氮和耐pH能力与群落中存在硝化杆菌(Nitrobacter)有关,而高耐盐性可能是由于该生境中存在耐盐或适度嗜盐特异基因型硝化细菌,运用Blast程序进行序列比对发现,这些特异基因型硝化细菌为不可培养微生物。

     

  • 图  1  不同生境来源硝化细菌硝化速率差异性

    Figure  1.  Differences in nitrification rates of nitrifying bacteria from different habitats

    图  2  不同生境来源硝化细菌硝化速率对氨氮初始浓度的响应

    Figure  2.  Nitrification rate response of denitrifying bacteria from different habitats to initial ammonium concentrations

    图  3  不同生境来源硝化细菌硝化速率对环境温度的响应

    Figure  3.  Nitrification rate response of denitrifying bacteria from different habitats to temperature

    图  4  不同生境来源硝化细菌硝化速率对环境pH的响应

    Figure  4.  Nitrification rate response of denitrifying bacteria from different habitats to pH

    图  5  不同生境来源硝化细菌硝化速率对环境盐度的响应

    Figure  5.  Nitrification rate response of denitrifying bacteria from different habitats to salinity

    图  6  不同生境来源硝化细菌MPN-PCR产物的琼脂糖凝胶电泳图谱

    Figure  6.  Agarose gel electrophoresis for MPN-PCR products of denitrifying bacteria from different habitats

    图  7  NitrobacterNitrospira在硝化细菌中所占比例

    Figure  7.  Percentages of Nitrobacter and Nitrospira in nitrifying bacteria

    图  8  基于amoA基因序列所构建的NJ树

    注:CJ、TR和SS分别代表沉积物、土壤和市售生境硝化细菌克隆子;节点处数值为分支检测得到,仅显示大于50%的数值。

    Figure  8.  NJ tree ofamoA genes

    图  9  amoA基因克隆子中NitrosospiraNitrosomona占比

    Figure  9.  The abundances of Nitrosospira and Nitrosomona in amoA gene clones

    表  1  各生境中Nitrobacter的基因型分析

    Table  1.   Genotype analysis of Nitrobacter from different habitats

    沉积物生境 土壤生境 市售生境
    基因型 克隆子 基因型 克隆子 基因型 克隆子
    基因型1 CJ1、CJ2、CJ3、CJ5、CJ8、CJ9、CJ13、CJ22、CJ25、CJ26、CJ31、CJ34、CJ36、CJ37、CJ38、CJ39、CJ43、CJ70、CJ71 基因型1 TR5、TR6、TR8、TR13、TR15、TR18、TR20、TR21、TR22、TR29、TR31、TR32、TR35、TR38、TR40、TR41、TR42、TR43、TR44、TR45、TR46 基因型1 SS4、SS6、SS7、SS13、SS14、SS15、SS16、SS19、SS20、SS21、SS22、SS27、SS29、SS30、SS35、SS36、SS37、SS38、SS39、SS43、SS45、SS46、SS51、SS52、SS54、SS55、SS56、SS57、SS58、SS68、SS69、SS70、SS71、SS72
    基因型2 CJ67 基因型3 TR14 基因型2 SS44
    基因型4 TR71 基因型5 SS5
    基因型6 SS8
    基因型7 SS28
    基因型8 SS42
    下载: 导出CSV

    表  2  各生境中Nitrospira基因型分析

    Table  2.   Genotype analysis of Nitrospira from different habitats

    沉积物生境 土壤生境 市售生境
    基因型 克隆子 基因型 克隆子 基因型 克隆子
    基因型1 CJ5、CJ12、CJ13、CJ14、CJ17、CJ18、CJ19、CJ25、CJ30、CJ53、CJ56、CJ57、CJ64、CJ66 基因型1 TR7、TR8、TR9、TR24、TR29、TR41、TR42、TR44、TR69 基因型1 SS3、SS4、SS8、SS42、SS43、
    SS59、SS62、SS64、SS67
    基因型2 CJ6、CJ7、CJ10、CJ15、CJ20、
    CJ24、CJ39、CJ41、CJ54
    基因型2 TR26、TR28、TR33、TR39 基因型2 SS17、SS38
    基因型3 CJ40 基因型3 TR21、TR72 基因型3 SS5、SS19、SS35、SS63、SS68
    基因型5 CJ42 基因型4 TR2、TR16、TR35、TR40 基因型4 SS41、SS44
    基因型8 CJ8 基因型5 TR10、TR14、TR66、TR68 基因型6 SS57
    基因型6 TR67、TR71 基因型7 SS10、SS60
    基因型22 CJ65 基因型23 TR1 基因型36 SS6
    基因型35 TR43 基因型51 SS66
    下载: 导出CSV
  • [1] SCHINDLER D W, HECKY R E, FINDLAY D L, et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment[J]. PNAS,2008,105(32):11254-11258.
    [2] XU X C, ZHANG R, JIANG H B, et al. Sulphur-based autotrophic denitrification of wastewater obtained following graphite production: long-term performance, microbial communities involved, and functional gene analysis[J]. Bioresource Technology,2020,306:123117. doi: 10.1016/j.biortech.2020.123117
    [3] 赵建国, 李洪波, 刘存歧, 等.永定河怀来段水体富营养化评价[J]. 环境工程技术学报,2018,8(3):248-256. doi: 10.3969/j.issn.1674-991X.2018.03.033

    ZHAO J G, LI H B, LIU C Q, et al. Evaluation of eutrophication of water body in Huailai section of Yongding River[J]. Journal of Environmental Engineering Technology,2018,8(3):248-256. doi: 10.3969/j.issn.1674-991X.2018.03.033
    [4] ZHANG Z W, HAN Y X, XU C Y, et al. Microbial nitrate removal in biologically enhanced treated coal gasification wastewater of low COD to nitrate ratio by coupling biological denitrification with iron and carbon micro-electrolysis[J]. Bioresource Technology,2018,262:65-73.
    [5] 周少奇, 周吉林.生物脱氮新技术研究进展[J]. 环境污染治理技术与设备,2000(6):11-19.

    ZHOU S Q, ZHOU J L. The advances in investigation of new technologies on biological nitrogen removal[J]. Technigues and Equipment for Enviropollcont,2000(6):11-19.
    [6] VERSTRAETE W, FOCHT D D. Biochemical ecology of nitrification and denitrification[J]. Advances in Microbial Ecology, 1977. doi: 10.1007/978-1-4615-8219-9_4.
    [7] ZHANG L M, HU H W, SHEN J P, et al. Ammonia-oxidizing Archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils[J]. The ISME Journal,2012,6(5):1032-1045. doi: 10.1038/ismej.2011.168
    [8] LÜCKER S, WAGNER M, MAIXNER F, et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(30):13479-13484. doi: 10.1073/pnas.1003860107
    [9] KAPOOR V, LI X A, ELK M, et al. Impact of heavy metals on transcriptional and physiological activity of nitrifying bacteria[J]. Environmental Science & Technology,2015,49(22):13454-13462.
    [10] GONZÁLEZ-CAMEJO J, APARICIO S, RUANO M V, et al. Effect of ambient temperature variations on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella[J]. Bioresource Technology,2019,290:121788.
    [11] GONZÁLEZ-CAMEJO J, MONTERO P, APARICIO S, et al. Nitrite inhibition of microalgae induced by the competition between microalgae and nitrifying bacteria[J]. Water Research,2020,172:115499. doi: 10.1016/j.watres.2020.115499
    [12] ZHANG D C, SU H, ANTWI P, et al. High-rate partial-nitritation and efficient nitrifying bacteria enrichment/out-selection via pH-DO controls: efficiency, kinetics, and microbial community dynamics[J]. Science of the Total Environment,2019,692:741-755.
    [13] JEONG D, CHO K, LEE C H, et al. Effects of salinity on nitrification efficiency and bacterial community structure in a nitrifying osmotic membrane bioreactor[J]. Process Biochemistry,2018,73:132-141. doi: 10.1016/j.procbio.2018.08.008
    [14] QIN W, LI W G, GONG X J, et al. Seasonal-related effects on ammonium removal in activated carbon filter biologically enhanced by heterotrophic nitrifying bacteria for drinking water treatment[J]. Environmental Science and Pollution Research International,2017,24(24):19569-19582. doi: 10.1007/s11356-017-9522-3
    [15] 张玲华, 邝哲师, 张宝玲.高效硝化细菌的富集培养与分离[J]. 浙江农业学报,2002,14(6):348-350. doi: 10.3969/j.issn.1004-1524.2002.06.011

    ZHANG L H, KUANG Z S, ZHANG B L. Research on enrichment and isolation techniques for high-efficient Nitrobacteria[J]. Acta Agriculturae Zhejiangensis,2002,14(6):348-350. doi: 10.3969/j.issn.1004-1524.2002.06.011
    [16] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [17] PARK S J, ANDREI A Ş, BULZU P A, et al. Expanded diversity and metabolic versatility of marine nitrite-oxidizing bacteria revealed by cultivation- and genomics-based approaches[J]. Applied and Environmental Microbiology,2020,86(22):e01667-20.
    [18] 王博, 姚倩, 彭党聪, 等.双重抑制下亚硝化系统的启动及运行特性[J]. 环境工程学报,2017,11(3):1525-1532. doi: 10.12030/j.cjee.201511064

    WANG B, YAO Q A, PENG D C, et al. Start-up and operating performance of nitritation system with dual inhibition[J]. Chinese Journal of Environmental Engineering,2017,11(3):1525-1532. doi: 10.12030/j.cjee.201511064
    [19] ZHANG F, YANG H, WANG J W, et al. Effect of free ammonia inhibition on NOB activity in high nitrifying performance of sludge[J]. RSC Advances,2018,8(56):31987-31995. doi: 10.1039/C8RA06198J
    [20] LIU Y W, NGO H H, GUO W S, et al. The roles of free ammonia (FA) in biological wastewater treatment processes: a review[J]. Environment International,2019,123:10-19. doi: 10.1016/j.envint.2018.11.039
    [21] 张立成, 牛艺, 宋永会, 等.低碳氮比条件下膜生物反应器处理高氨氮废水时稳定亚硝化过程的建立[J]. 环境工程技术学报,2014,4(6):451-455. doi: 10.3969/j.issn.1674-991X.2014.06.071

    ZHANG L C, NIU Y, SONG Y H, et al. Establishment of stable nitritation process in a MBR reactor for treatment of high ammonia wastewater with low C/N ratio[J]. Journal of Environmental Engineering Technology,2014,4(6):451-455. doi: 10.3969/j.issn.1674-991X.2014.06.071
    [22] DUCEY T F, VANOTTI M B, SHRINER A D, et al. Characterization of a microbial community capable of nitrification at cold temperature[J]. Bioresource Technology,2010,101(2):491-500. doi: 10.1016/j.biortech.2009.07.091
    [23] 尹军, 刘亮, 赵可, 等.不同温度对SBR腐殖活性污泥系统运行效能的影响[J]. 环境工程学报,2011,5(1):7-10.

    YIN J, LIU L A, ZHAO K, et al. Influence of different temperatures on operation efficiency of SBR humic active sludge system[J]. Chinese Journal of Environmental Engineering,2011,5(1):7-10.
    [24] MARTÍNEZ-LUQUE M, DOBAO M M, CASTILLO F. Characterization of the assimilatory and dissimilatory nitrate-reducing systems in Rhodobacter: a comparative study[J]. FEMS Microbiology Letters,1991,83(3):329-333. doi: 10.1111/j.1574-6968.1991.tb04485.x
    [25] BLUM J M, SU Q X, MA Y J, et al. The pH dependency of N-converting enzymatic processes, pathways and microbes: effect on net N2O production[J]. Environmental Microbiology,2018,20(5):1623-1640. doi: 10.1111/1462-2920.14063
    [26] MENG J, LI J L, LI J Z, et al. Effect of temperature on nitrogen removal and biological mechanism in an up-flow microaerobic sludge reactor treating wastewater rich in ammonium and lack in carbon source[J]. Chemosphere,2019,216:186-194. doi: 10.1016/j.chemosphere.2018.10.132
    [27] TYSON R V, SIMONNE E H, TREADWELL D D, et al. Reconciling pH for ammonia biofiltration and cucumber yield in a recirculating aquaponic system with perlite biofilters[J]. HortScience,2008,43(3):719-724. doi: 10.21273/HORTSCI.43.3.719
    [28] QUINLAN A V. Prediction of the optimum pH for ammonia-n oxidation by Nitrosomonas Europaea in well-aerated natural and domestic-waste waters[J]. Water Research,1984,18(5):561-566. doi: 10.1016/0043-1354(84)90204-5
    [29] VILLAVERDE S, GARCÍA-ENCINA P A, FDZ-POLANCO F. Influence of pH over nitrifying biofilm activity in submerged biofilters[J]. Water Research,1997,31(5):1180-1186. doi: 10.1016/S0043-1354(96)00376-4
    [30] ANTHONISEN A C, LOEHR R C, PRAKASAM T B, et al. Inhibition of nitrification by ammonia and nitrous acid[J]. Water Pollution Control Federation,1976,48(5):835-852.
    [31] BRAAM F, KLAPWIJK A. Effect of copper on nitrification in activated sludge[J]. Water Research,1981,15(9):1093-1098. doi: 10.1016/0043-1354(81)90077-4
    [32] 谢佳胤, 王平, 李捍东, 等.毒性检测系统中硝化菌的分离鉴定及其特性研究[J]. 环境工程技术学报,2011,1(1):52-56. doi: 10.3969/j.issn.1674-991X.2011.01.009

    XIE J Y, WANG P, LI H D, et al. Isolation, identification and characterization of Nitrobacteria for the microbial toxicity testing system[J]. Journal of Environmental Engineering Technology,2011,1(1):52-56. doi: 10.3969/j.issn.1674-991X.2011.01.009
    [33] WANG J L, ZHOU J A, WANG Y M, et al. Efficient nitrogen removal in a modified sequencing batch biofilm reactor treating hypersaline mustard tuber wastewater: The potential multiple pathways and key microorganisms[J]. Water Research,2020,177:115734. doi: 10.1016/j.watres.2020.115734
    [34] 孙玉辉, 刘齐, 姜月, 等.蔬菜与餐厨垃圾厌氧发酵启动阶段微生物分析[J]. 环境工程学报,2014,8(1):310-316.

    SUN Y H, LIU Q, JIANG Y E, et al. Analysis of microorganism at starting stage of anaerobic fermentation of vegetable waste and restaurant garbage[J]. Chinese Journal of Environmental Engineering,2014,8(1):310-316.
    [35] CÉBRON A, BERTHE T, GARNIER J. Nitrification and nitrifying bacteria in the lower Seine River and estuary (France)[J]. Applied and Environmental Microbiology,2003,69(12):7091-7100. doi: 10.1128/AEM.69.12.7091-7100.2003
    [36] SCHMID M, TWACHTMANN U, KLEIN M, et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation[J]. Systematic and Applied Microbiology,2000,23(1):93-106. doi: 10.1016/S0723-2020(00)80050-8
    [37] GUO C Z, FU W, CHEN X M, et al. Nitrogen-removal performance and community structure of nitrifying bacteria under different aeration modes in an oxidation ditch[J]. Water Research,2013,47(11):3845-3853. doi: 10.1016/j.watres.2013.04.005
    [38] SCHRAMM A, de BEER D, van den HEUVEL J C, et al. Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors[J]. Applied and Environmental Microbiology,1999,65(8):3690-3696. doi: 10.1128/AEM.65.8.3690-3696.1999
    [39] GIESEKE A, PURKHOLD U, WAGNER M, et al. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm[J]. Applied and Environmental Microbiology,2001,67(3):1351-1362. doi: 10.1128/AEM.67.3.1351-1362.2001
    [40] BURRELL P C, KELLER J, BLACKALL L L. Microbiology of a nitrite-oxidizing bioreactor[J]. Applied and Environmental Microbiology,1998,64(5):1878-1883. doi: 10.1128/AEM.64.5.1878-1883.1998
    [41] JURETSCHKO S, TIMMERMANN G, SCHMID M, et al. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations[J]. Applied and Environmental Microbiology,1998,64(8):3042-3051. doi: 10.1128/AEM.64.8.3042-3051.1998
    [42] BLACKBURNE R, VADIVELU V M, YUAN Z G, et al. Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter[J]. Water Research,2007,41(14):3033-3042. doi: 10.1016/j.watres.2007.01.043
    [43] PARADES-AGUILAR J, ALMENDARIZ-TAPIA F J, VAÁZQUEZ-EUÁAN R, et al. Nitrogenized and chlorinated compounds pollutants from industrial wastewater: their environmental impacts and bioremediation strategies[M]. Boca Raton: CRC Press, 2021: 203-221.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  310
  • HTML全文浏览量:  151
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-04

目录

    /

    返回文章
    返回