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SUPPLEMENTARY FILE OF “COVARIATE BALANCING
PROPENSITY SCORE BY TAILORED LOSS FUNCTIONS”

APPENDIX A: TECHNICAL PROOFS

A.1. Proof of Proposition 2. The same result can be found in Buja
et al. (2005, Section 15). For completeness we give a direct proof here. Denote
p = l−1(f) ∈ (0, 1). Since v = vα,β, we have

G′′(p)

l′(p)
= pα(1− p)β

Therefore, by the chain rule and the inverse function theorem,

d

df
S(l−1(f), 1) = (1− p)G′′(p)(l−1)′(f) = pα(1− p)β+1,

d

df
S(l−1(f), 0) = −pG′′(p)(l−1)′(f) = −pα+1(1− p)β, and

d2

df2
S(l−1(f), 1) = αpα(1− p)β+2 − (β + 1)pα+1(1− p)β+1,

d2

df2
S(l−1(f), 0) = −(α+ 1)pα+1(1− p)β+1 + βpα+2(1− p)β.

The conclusions immediate follow by letting the second order derivatives be
less than or equal to 0.

A.2. Proof of Theorem 2. First we list the technical assumptions in
Hirano et al. (2003):

Assumption 1. (Distribution of X) The support of X is a Cartesian
product of compact intervals. The density of X is bounded, and bounded
away from 0.

Assumption 2. (Distribution of Y (0), Y (1)) The second moments of
Y (0) and Y (1) exist and g(X, 0) = E[Y (0)|X] and g(X, 1) = E[Y (1)|X]
are continuously differentiable.

Assumption 3. (Propensity score) The propensity score p(X) = P(T =
1|X) is continuously differentiable of order s ≥ 7d where d is the dimension
of X, and p(x) is bounded away from 0 and 1.
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Assumption 4. (Sieve estimation) The nonparametric sieve logistic re-
gression uses a power series with m = O(nν) for some 1/(4(s/d−1)) < ν <
1/9.

The proof is a simple modification of the proof in Hirano et al. (2003).
In fact, Hirano et al. (2003) only proved the convergence of the estimated
propensity score up to certain order. This essentially suggests that the semi-
parametric efficiency of τ̂ does not heavily depend on the accuracy of the
sieve logistic regression.

To be more specific, only three properties of the maximum likelihood rule
S = S0,0 are used in Hirano et al. (2003, Lemmas 1,2):

1. θ̃ = arg maxθ S(pθ, pθ̃) (line 5, page 19), this is exactly the definition
of a strictly proper scoring rule (1);

2. The Fisher information matrix

∂2

∂θ∂θT
S(pθ, pθ̃) = Eθ̃

{[
d2

df2
S(l−1(f), T )

∣∣∣
f=φ(X)T θ

]
φ(X)φ(X)T

}
has all eigenvalues uniformly bounded away from 0 for all θ and θ̃ in
a compact set in Rm, where the expectation on the right hand side is
taken over X and T |X ∼ pθ̃.

3. As m → ∞, with probability tending to 1 the observed Fisher infor-
mation matrix

∂2

∂θ∂θT
1

n

n∑
i=1

S(pθ(Xi), Ti) =
1

n

n∑
i=1

[
d2

df2
S(l−1(f), Ti)

∣∣∣
f=φ(Xi)T θ

]
φ(Xi)φ(Xi)

T

has all eigenvalues uniformly bounded away from 0 for all θ in a com-
pact set of Rm (line 7–9, page 21).

Because the approximating functions φ are obtained through orthogonalizing
the power series, we have E[φ(X)φ(X)T ] = Im and one can show its finite
sample version has eigenvalues bounded away from 0 with probability going
to 1 as n → ∞. Therefore a sufficient condition for the second and third
properties above is that S(l−1(f), t) is strongly concave for t = 0, 1. In
Proposition 2 we have already proven the strong concavity for all −1 ≤
α, β ≥ 1 except for α = −1, β = 0 and α = 0, β = −1. In these two boundary
cases, among S(l−1(f), 0) and S(l−1(f), 1) one score function is strongly
concave and the other score function is linear in f . One can still prove the
second and third properties by using Assumption 3 that the propensity score
is bounded away from 0 and 1.
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A.3. Proof of Proposition 3. The conclusion is trivial for a = 1.
Denote

h(f, t) =
d

df
S(l−1(f), t) and h′(f, t) =

d

df
h(f, t), t = 0, 1.

Because S(l−1(f), t) is concave in f , we have h′(f, t) < 0 for all f . The
first-order optimality condition of (14) is given by

1

n

n∑
i=1

h(θ̂Tλφ(Xi), Ti)φk(Xi) + λ|(θ̂λ)k|a−1sign((θ̂λ)k) = 0, k = 1, . . . ,m.

Let ∇θ̂λ be the gradient of θ̂λ with respect to λ. By taking derivative of the
identity above, we get[

1

n

n∑
i=1

h′(θ̂Tλφi, Ti)φiφ
T
i + λ(a− 1)diag(|θ̂λ|a−2)

]
∇θ̂λ = −|θ̂λ|a−1sign(θ̂λ),

where we used the abbreviation φi = φ(Xi) and θa = (θa1 , . . . , θ
a
m). For

brevity, let’s denote

H =
1

n

n∑
i=1

h′(θ̂Tλφi, Ti)φiφ
T
i ≺ 0 and G = λ(a− 1)diag(|θ̂λ|a−2).

For a > 1, the result is proven by showing the derivative of λ‖θ̂λ‖a−1a is
greater than 0.

d

dλ

(
λ‖θ̂λ‖a−1a

)
= ‖θ̂λ‖a−1a + λ

d

dλ

[
m∑
j=1

∣∣∣(θ̂λ)k

∣∣∣a ](a−1)/a

= ‖θ̂λ‖a−1a + λ(a− 1)‖θ̂λ‖−1a
m∑
j=1

∣∣∣(θ̂λ)k

∣∣∣a−1 (∇θ̂λ)k sign((θ̂λ)k)

= ‖θ̂λ‖a−1a − λ(a− 1)‖θ̂λ‖−1a (|θ̂λ|a−1)T (H +G)−1|θ̂λ|a−1

> ‖θ̂λ‖a−1a − λ(a− 1)‖θ̂λ‖−1a (|θ̂λ|a−1)TG−1|θ̂λ|a−1

= 0.

APPENDIX B: A CLOSER LOOK AT THE BETA FAMILY

Figure 1 plots the scoring rules Sα,β for some combinations of α and β.
The top panels show the score function S(p, 0) and S(p, 1) for 0 < p < 1,



4

t = 1 t = 0

−4

−2

0

2

4

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
p

−
S

(p
, t

)

●●

α = − 1, β = − 1

α = − 1, β = 0

α = 0, β = − 1

α = 0, β = 0

α = 1, β = 1

α = ∞, β = ∞

(a) Loss functions −Sα,β(p, t) for t = 0, 1.

q = 0.05 q = 0.15

1

10

100

0.005 0.050 0.500 0.005 0.050 0.500
p

−
S

(p
, q

)

●

α = − 1, β = − 1

α = − 1, β = 0

α = 0, β = − 1

α = 0, β = 0

α = 1, β = 1

α = ∞, β = ∞

(b) Loss functions −Sα,β(p, q) for q = 0.05 and 0.15.

Fig 1: Graphical illustration of the Beta-family of scoring rules defined in
(3).
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which are normalized so that S(1/4, 1) = S(3/4, 0) = −1 and S(1/4, 0) =
S(3/4, 1) = 1. By a change of variable, one can show Sα,β(p, 1) = Sβ,α(1 −
p, 0). This is the reason that the two subplots in Figure 1a are essentially
reflections of each other. The bottom panels show the induced scoring rule
S(p, q) defined by section 2.1 or more specifically S(p, q) = qS(p, 1) + (1 −
q)S(p, 0) at two different values of q = 0.05, 0.15. For aesthetic purposes,
the scoring rules in Figure 1b are normalized such that −S(p, q) = 1 and
−S(p, 1− q) = 2.

Figure 1 shows that the scoring rules Sα,β, when −1 ≤ α, β ≤ 0, are highly
sensitive to small differences of small probabilities. For example, in Figure 1a
the loss function −Sα,β(p, 1) is unbounded above when α, β ∈ {−1, 0}, hence
a small change of p near 0 may have a big impact on the score. In Figure 1b,
the averaged scoring rules Sα,β(p, q), when (α, β) = (−1,−1) or (−1, 0), are
also unbounded near p = 0. Due to this reason, Selten (1998, Section 2.6)
argued that these scoring rules are inappropriate for probability forecast
problems.

On the contrary, the unboundedness is actually a desirable feature for
propensity score estimation, as the goal is to avoid extreme probabilities.
Consider the standard inverse probability weights (IPW)

(1) ŵi =

{
p̂−1i if Ti = 1,

(1− p̂i)−1 if Ti = 0,

where p̂i = pθ̂(Xi) is the estimated propensity score for the i-th data point.
This corresponds to α = β = −1 in the Beta family and estimates ATE.
Several previous articles (e.g. Robins and Wang, 2000, Kang and Schafer,
2007, Robins et al., 2007) have pointed out the hazards of using large inverse
probability weights. For example, if the true propensity score is p(Xi) = q =
0.05 and it happens that Ti = 1, we would want p̂i not too close to 0 so ŵi is
not too large. Conversely, we also want p̂i not too close to 1, so in the more
likely event that Ti = 0 the weight ŵi is not too large either. In an ad hoc
attempt to mitigate this issue, Lee et al. (2011) studied weight truncation
(e.g. truncate the largest 10% weights). They found that the truncation can
reduce the standard error of the estimator τ̂ but also increases the bias.

The covariate balancing scoring rules provide a more systematic approach
to avoid large weights. For example, the scoring rule S−1,−1 precisely penal-
izes large inverse probability weights as −S−1,−1(p, q) is unbounded above
when p is near 0 or 1 (see the left plot in Figure 1b). Similarly, when esti-
mating the ATUT τ−1,0, the weighting scheme would put ŵi ∝ (1 − p̂i)/p̂i
if Ti = 1 and ŵi ∝ 1 if Ti = 0. Therefore we would like p̂i to be not close
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to 0, but it is acceptable if p̂i is close to 1. As shown in in Figure 1b, the
curve −S−1,0(p, q) = q/p + (1 − q) log(p/(1 − p)) precisely encourages this
behavior, as it is unbounded above when p is near 0 and grows slowly when
p is near 1.

REFERENCES

Buja, A., W. Stuetzle, and Y. Shen (2005). Loss functions for binary class probability
estimation and classification: Structure and applications. Working draft .

Hirano, K., G. W. Imbens, and G. Ridder (2003). Efficient estimation of average treatment
effects using the estimated propensity score. Econometrica 71 (4), 1161–1189.

Kang, J. D. and J. L. Schafer (2007). Demystifying double robustness: a comparison of
alternative strategies for estimating a population mean from incomplete data. Statistical
Science 22 (4), 523–539.

Lee, B. K., J. Lessler, and E. A. Stuart (2011). Weight trimming and propensity score
weighting. PloS ONE 6 (3), e18174.

Robins, J., M. Sued, Q. Lei-Gomez, and A. Rotnitzky (2007). Comment: Performance of
double-robust estimators when inverse probability weights are highly variable. Statis-
tical Science 22 (4), 544–559.

Robins, J. M. and N. Wang (2000). Inference for imputation estimators. Biometrika 87 (1),
113–124.

Selten, R. (1998). Axiomatic characterization of the quadratic scoring rule. Experimental
Economics 1 (1), 43–62.


	Technical proofs
	Proof of prop:beta-concave
	Proof of thm:beta-efficient
	Proof of prop:reguarlized-bias

	A closer look at the Beta family
	References

