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S1. Proofs of Propositions

The supplementary materials contain proofs of Propositions 1, 2 and 3, providing the-
oretical support for the methodology developed in the article “Bayesian Inference and
Testing of Group Differences in Brain Networks”.

Proof. Proposition 1. Recalling Lemma 2.1 in Durante et al. (2016) we can always
represent the conditional probability pL(A)|y(a) separately for each group y ∈ {1, 2} as

pL(A)|y(a) =

Hy∑
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νhy

V (V−1)/2∏
l=1

(π
(hy)
l )al(1− π(hy)

l )1−al , a ∈ AV ,

with each π
(hy)
l defined as logit(π

(hy)
l ) = Z

(y)
l +

∑Ry

ry=1 λ
(hy)
ry X

(hy)
vry X

(hy)
ury , l = 1, . . . , V (V−

1)/2 and hy = 1, . . . ,Hy. Hence Proposition 1 follows after choosing π(h), h = 1, . . . ,H
as the sequence of unique component-specific edge probability vectors π(hy) appearing in
the above separate factorizations for at least one group y, and letting the group-specific
mixing probabilities in (8) be νhy = νhy

if π(h) = π(hy) and νhy = 0 otherwise.

Proof. Proposition 2. Recalling factorization (8), and letting A−lV denote the set con-
taining all the possible network configurations for the node pairs except the lth one, we
have that pL(A)l|y(1) is equal to∑
A−l
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Then, Proposition 2 follows after noticing that
∏
l∗ 6=l(π

(h)
l∗ )al∗ (1−π(h)

l∗ )1−al∗ is the joint
pmf of independent Bernoulli random variables, and hence the summation over the joint

sample space A−lV = {0, 1}V (V−1)/2−1, provides
∑

A−l
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The proof of pL(A)l(1) =
∑2
y=1 pY(y)

∑H
h=1 νhyπ

(h)
l follows directly from the above

results after noticing that pL(A)l(1) =
∑2
y=1 pY,L(A)l(y, 1) =

∑2
y=1 pY(y)pL(A)l|y(1).
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Proof. Proposition 3. Recalling the proof of Proposition 1 and factorization (5), we

can always represent
∑2
y=1

∑
a∈AV

|pY,L(A)(y,a)− p0Y,L(A)(y,a)| as
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with ν0hy = ν0hy
if π0(h) = π0(hy) and ν0hy = 0 otherwise. Hence Π{Bε(p0Y,L(A))} is∫

1(

2∑
y=1

∑
a∈AV

|pY,L(A)(y,a)− p0Y,L(A)(y,a)| < ε)dΠy(pY)dΠπ(π(1), . . . ,π(H))dΠν(ν1,ν2).

Recalling results in Dunson and Xing (2009), a sufficient condition for the above integral

to be strictly positive is that Πy{pY :
∑2
y=1 |pY(y)−p0Y(y)| < εy} > 0, Ππ{π(1), . . . ,π(H) :∑H

h=1

∑V (V−1)/2
l=1 |π(h)

l − π0(h)
l | < επ} > 0 and Πν{ν1,ν2 :

∑2
y=1

∑H
h=1 |νhy − ν0hy| <

εν} > 0, for every εy > 0, επ > 0 and εν > 0. The large support for pY is directly
guaranteed from the Beta prior. Similarly, according to Theorem 3.1 and Lemma 3.2 in
Durante et al. (2016), the same hold for the joint prior over the sequence of component-
specific edge probability vectors π(h), h = 1, . . . ,H induced by priors ΠZ , ΠX and
Πλ in factorization (9). Finally, marginalizing out the testing indicator T , and re-
calling our prior specification for the mixing probabilities in (12), a lower bound for

Πν{ν1,ν2 :
∑2
y=1

∑H
h=1 |νhy − ν0hy| < εν} is
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|υhy − ν0hy| < εν/2}.

If the true model is generated under independence, the above equation reduces to

pr(H0)Πυ{υ :

H∑
h=1

|υh − ν0h| < εν/2}+ pr(H1)
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y=1

Πυy{υy :

H∑
h=1
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with the Dirichlet priors for υ, υ1 and υ2 ensuring the positivity of both terms. When
instead ν0h1 6= ν0h2 for some h = 1, . . . ,H, the inequality pr(H0)Πυ{υ :

∑2
y=1

∑H
h=1 |υh−

ν0hy| < εν} > 0 is not guaranteed, but pr(H1)
∏2
y=1 Πυy{υy :

∑H
h=1 |υhy − ν0hy| < εν/2}

remains strictly positive for every εν under the independent Dirichlet priors for the
quantities υ1 and υ2, proving the Proposition.
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