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APPENDIX A: PROOF OF THEOREMS 1-3

A.1. Proof of Theorems 2-4. We will only prove Theorems 2 and 3. The proof of

Theorem 4 is omitted as it is similar to that of Theorems 2 and 3.

A.1.1. Proof of Theorem 2. We first prove (i). As θii and θjj are uniformly bounded,

the large deviation probability in (20) follows from (18) for θoraii and θorajj . We then need

only to consider the entry θoraij . Recall that D = diag(XTX/n) and XAc is independent

of εA. It follows that (XD
−1/2

)Tk εm/n ∼ N (0, θmm/n) for all m ∈ A, so that

P

{∥∥∥(XD
−1/2

)TAcεm/n
∥∥∥
∞

>
√

δθmm(2/n) log p
}
≤ p−δ(p− 2)√

2δ log p
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by the union bound. Thus, it follows from (16) and (17) that∣∣∣θ̂ij − θoraij

∣∣∣ =
∣∣ε̂Ti ε̂j/n− εTi εj/n

∣∣
=

∣∣∣∣(εi +XAc

(
βi − β̂i

))T (
εj +XAc

(
βj − β̂j

))
/n− εTi εj/n

∣∣∣∣
≤
∥∥∥(XD

−1/2
)TAcεi/n

∥∥∥
∞

∥∥∥D1/2
Ac (βj − β̂j)

∥∥∥
1

+
∥∥∥(XD

−1/2
)TAcεj/n

∥∥∥
∞

∥∥∥D1/2
Ac (βi − β̂i)

∥∥∥
1

+
∥∥∥XAc

(
βi − β̂i

)∥∥∥ · ∥∥∥XAc

(
βj − β̂j

)∥∥∥/n
≤ 2

√
δθmm(2/n) log pC0s

√
δ(log p)/n+ C0sδ(log p)/n

= C1sδ(log p)/n

with at least probability 1− 2p−δ+1εΩ − 2p−δ+1/
√
2 log p, and (20) follows.

As ΘA,A has a bounded spectrum, the functional ζkl (ΘA,A) =
(
Θ−1A,A

)
kl

is Lipschitz in

a neighborhood of ΘA,A for k, l ∈ A, so that (21) is an immediate consequence of (20).

For part (ii), we note that the regression model (7) has Gaussian error and Gaussian

design, and the complexity of βAc,m, m ∈ A, is controlled by sλ(Ω) ≤ s ≤ c0n/ log p up

to a constant factor. Moreover, as the spectrum of the population covariance matrix is

contained in [1/M,M ], the noise level and the spectrum of the population Gram matrix

EXT
AcXAc/n are all contained in [1/M,M ] in the linear model. Thus, part (ii) follows

from Theorem 10 (i), Theorem 11 (ii) and Proposition 1.

For part (iii), define random vector ηora =
(
ηoraii , ηoraij , ηorajj

)
, where ηorakl =

√
n

θorakl −θkl√
θkkθll+θ2kl

.

The following result is a multidimensional version of KMT quantile inequality: there ex-

ist some constants D0, ϑ ∈ (0,∞) and random Gaussian vector Z = (Zii, Zij , Zjj) ∼
N
(
0, Σ̆
)
with Σ̆ = Cov(ηora) such that whenever |Zkl| ≤ ϑ

√
n for all kl, we have

(82) ‖ηora − Z‖∞ ≤
D0√
n

(
1 + Z2

ii + Z2
ij + Z2

jj

)
.

See Proposition [KMT] in Mason and Zhou (2012) for one dimensional case and consult

Einmahl (1989) for multidimensional case. Note that
√
nηora can be written as a sum of

n i.i.d. random vectors with mean zero and covariance matrix Σ̆, each of which is sub-

exponentially distributed. Hence the assumptions of KMT quantile inequality in literature

are satisfied. With a slight abuse of notation, we define Θ = (θii, θij , θjj). To prove the

desired coupling inequality (23), we use the Taylor expansion of the function ωij (Θ) =



3

−θij/
(
θiiθjj − θ2ij

)
to obtain

ωora
ij − ωij

= 〈∇ωij (Θ) ,Θora −Θ〉+
∑
|β|=2

Rβ (Θ
ora) (Θ−Θora)β .(83)

The multi-index notation of β = (β1, β2, β3) is defined as |β| =∑k βk, x
β =

∏
k x

βk
k and

Dβf (x) = ∂|β|f
∂x

β1
1 ∂x

β2
2 ∂x

β3
3

. The derivatives can be easily computed. To save the space, we

omit their explicit formulas. The coefficients in the integral form of the remainder with

|β| = 2 have a uniform upper bound
∣∣∣Rβ

(
Θora

A,A

)∣∣∣ ≤ 2max|α|=2
maxΘ∈B Dαωij (Θ) ≤ C2,

where B is some sufficiently small compact ball with center Θ when Θora is in this ball

B, which is satisfied by picking a sufficiently small value ϑ in our assumption ‖ηora‖∞ ≤
ϑ
√
n. Recall that κoraij and ηora are standardized versions of

(
ωora
ij − ωij

)
and (Θ−Θora) .

Consequently there exist some deterministic constants h1, h2, h3 and Dβ with |β| = 2 such

that we can rewrite (83) in terms of κoraij and ηora as follows,

κoraij = h1η
ora
ii + h2η

ora
ij + h3η

ora
jj +

∑
|β|=2

DβRβ (Θ
ora)√

n
(ηora)β ,

which, together with Equation (82), completes our proof of Equation (23),

∣∣κoraij − Z ′
∣∣ ≤ ( 3∑

k=1

|hk|
)
‖Z − ηora‖∞ +

C3√
n
‖ηora‖2 ≤ D1√

n

(
1 + Z2

ii + Z2
ij + Z2

jj

)
,

where constants C3, D1 ∈ (0,∞) and Z ′ = h1Z1 + h2Z2 + h3Z3 ∼ N (0, 1) . The last

inequality follows from ‖ηora‖2 ≤ C4

(
Z2
ii + Z2

ij + Z2
jj

)
for some large constant C4, which

can be shown using (82) easily.

A.1.2. Proof of Theorem 3. The triangle inequality gives

|ω̂ij − ωij | ≤ ∣∣ω̂ij − ωora
ij

∣∣+ ∣∣ωora
ij − ωij

∣∣ ,∥∥∥Ω̂A,A − ΩA,A

∥∥∥
∞

≤
∥∥∥Ω̂A,A − Ωora

A,A

∥∥∥
∞

+
∥∥Ωora

A,A − ΩA,A

∥∥
∞ .

From Equation (21) we have

P

{∥∥∥Ω̂A,A − Ωora
A,A

∥∥∥
∞

> C1s
log p

n

}
= o
(
p−δ+1

)
.

Now we give a tail bound for
∣∣∣ωora

ij − ωij

∣∣∣ and ∥∥∥Ωora
A,A − ΩA,A

∥∥∥
∞

respectively. Let Φ(t) be

the N (0, 1) distribution function. For the constant C > 0, we apply (23) to obtain

P
{∣∣κoraij

∣∣ > C
}
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≤ P
{
max {|Zkl|} > ϑ

√
n
}
+ Φ̄

(
C

2

)
+ P

{
D1√
n

(
1 + Z2

ii + Z2
ij + Z2

jj

)
>

C

2

}
≤ o(1) + 2 exp

(−C2/8
)
,

according to the inequality Φ̄ (x) ≤ 2 exp
(−x2/2) for x > 0 and the union bound of three

Gaussian tail probabilities. This immediately implies that for large C4 and large n,

P

{∣∣ωora
ij − ωij

∣∣ > C4

√
1

n

}
≤ 3

4
ε,

which, together with (21), yields that for C2 > C1 + C4,

P

{
|ω̂ij − ωij | > C2max

{
s
log p

n
,

√
1

n

}}
≤ ε.

Similarly, Equation (23) implies

P

{∣∣κoraij

∣∣ > C
√

log p
}

≤ P
{
max {|Zkl|} > ϑ

√
n
}
+ Φ̄

(
C
√
log p

2

)
+P

{
D1√
n

(
1 + Z2

ii + Z2
ij + Z2

jj

)
>

C
√
log p

2

}
= O

(
p−C

2/8
)
,

where the first and last components in the first inequality are negligible due to log p ≤ c0n

with a sufficiently small c0 > 0, which follows from the assumption s ≤ c0n/ log p. That

immediately implies that for C5 large enough,

P

{∥∥Ωora
A,A − ΩA,A

∥∥
∞ > C5

√
log p

n

}
= o(p−δ),

which, together with (21), yields that for C3 > C ′1 + C5.

P

{∥∥∥Ω̂A,A − ΩA,A

∥∥∥
∞

> C3max

{
s
log p

n
,

√
log p

n

}}
= o
(
p−δ+1

)
.

Thus we have the following union bound over all
(
p
2

)
pairs of (i, j),

P

{∥∥∥Ω̂− Ω
∥∥∥
∞

> C3max

{
s
log p

n
,

√
log p

n

}}
= p2/2 · o

(
p−δ+1

)
= o
(
p−δ+3

)
.

Write √
n
(
Ω̂A,A − ΩA,A

)
=
√
n
(
Ω̂A,A − Ωora

A,A

)
+
√
n
(
Ωora
A,A − ΩA,A

)
.

Under the assumption s = o
( √

n
log p

)
, noting that ωiiωjj + ω2

ij is bounded, we have

√
n
∥∥∥Ω̂A,A − Ωora

A,A

∥∥∥
∞

= op(1),
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which together with Equation (23) further implies√
n/
(
ωiiωjj + ω2

ij

)
(ω̂ij − ωij)

D∼
√

n/
(
ωiiωjj + ω2

ij

) (
ωora
ij − ωij

) D→ N (0, 1) .

As an immediate consequence, F̂ij is a consistent estimator of Fij , which is bounded above

and below by some positive constants. Thus we obtain F̂ij/Fij → 1.

A.2. Proof of Theorem 1. The probabilistic results (i) and (ii) as well as (3) are

the immediate consequences of Theorems 2 and 5. We only need to show the minimax

rate of convergence result (2). According to the probabilistic lower bound result (35) in

Theorem 5, we immediately obtain that

inf
ω̂ij

sup
G0(M,kn,p)

E |ω̂ij − ωij | ≥ c1max

{
C1

kn,p log p

n
,C2

√
1

n

}
.

Thus it is enough to show there exists some estimator of ωij such that it attains this upper

bound. More precisely, we have defined a truncated estimator based on the ω̂ij in (10) to

control the small event in which Θ̂A,A is nearly singular:

ω̆ij = sgn(ω̂ij) ·min {|ω̂ij | , log p} .

Define the event G =
{∣∣∣ω̂ij − ωora

ij

∣∣∣ ≤ C1
kn,p log p

n ,
∣∣∣ωora

ij

∣∣∣ ≤ 2M
}
. Note that the Equations

(20) and (23) in Theorem 2 imply P {Gc} ≤ C
(
p−δ+1 + exp (−cn)) for some constants C

and c. Now according to the variance of inverse Wishart distribution, we pick δ ≥ 2ξ + 1

to complete our proof as follows:

E |ω̆ij − ωij | ≤ E
(∣∣ω̆ij − ωora

ij

∣∣ 1 {G})+ E
(∣∣ω̆ij − ωora

ij

∣∣ 1 {Gc})+ E
∣∣ωora

ij − ωij

∣∣
≤ C1

kn,p log p

n
+
(
P {Gc}E (log p+ ∣∣ωora

ij

∣∣)2)1/2 + (E (ωora
ij − ωij

)2)1/2
≤ C1

kn,p log p

n
+ C2p

− δ+1
2 log p+ C3

1√
n

≤ C ′max

{
kn,p log p

n
,

√
1

n

}
,

where C2, C3 and C ′ are some constants and the last equation follows from the assumption

n = O
(
pξ
)
.

APPENDIX B: PROOF OF THEOREMS IN APPLICATIONS

B.1. Proof of Theorem 6. When δ > 3, from Theorem 2 it can be shown that the

following three results hold:
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(i) For any constant ε > 0, we have

(84) P

{
sup
(i,j)

∣∣∣∣∣ ω̂iiω̂jj + ω̂2
ij

ωiiωjj + ω2
ij

− 1

∣∣∣∣∣ > ε

}
→ 0;

(ii) There is a constant C1 > 0 such that

(85) P

{
sup
(i,j)

∣∣ωora
ij − ω̂ij

∣∣ > C1s
log p

n

}
→ 0;

(iii) For any constant 2 < ξ1, we have

(86) P

⎧⎨⎩ sup
(i,j)

∣∣∣ωora
ij − ωij

∣∣∣√
ωiiωjj + ω2

ij

>

√
2ξ1 log p

n

⎫⎬⎭→ 0.

In fact, under the assumption δ ≥ 3, Equation (21) in Theorem 2 and the union bound

over all pair (i, j) imply the second result (85), which further shows the first result (84)

because that ω̂ij and ω̂ii are consistent estimators and ωiiωjj + ω2
ij is bounded below and

above. For the third result, we apply Equation (23) from Theorem 2 and pick 2 < ξ2 < ξ1

and a =
√
ξ1 −

√
ξ2 to show that

P

{ ∣∣κoraij

∣∣ >√2ξ1 log p
}

≤ P
{
max {|Zkl|} > ϑ

√
n
}
+ Φ̄

(√
2ξ2 log p

)
+P

{
D1√
n

(
1 + Z2

ii + Z2
ij + Z2

jj

)
> a
√

2 log p

}
= O(1)p−ξ2

√
1

log p
,

where the last inequality follows from log p = o(n). The third result (86) is thus obtained

by the union bound with 2 < ξ2.

As the proof of (41) and (42) are nearly identical to each other, we only prove that (42)

in Theorem 6 is just a simple consequence of results (i), (ii) and (iii). Set ε > 0 sufficiently

small and ξ ∈ (2, ξ0) sufficiently close to 2 such that 2
√
2ξ0 −

√
2ξ0 (1 + ε) >

√
2ξ and
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ξ0 (1− ε) > ξ, and 2 < ξ1 < ξ. We have

P

(
S(Ω̂thr) = S(Ω)

)
= P

(
ω̂thr
ij 
= 0 for all (i, j) : ωij 
= 0

)
+ P

(
ω̂thr
ij = 0 for all (i, j) : ωij = 0

)

= P

⎧⎪⎪⎨⎪⎪⎩ |ω̂ij | >

√√√√2ξ0

(
ω̂iiω̂jj + ω̂2

ij

)
log p

n
for all (i, j) : ωij 
= 0

⎫⎪⎪⎬⎪⎪⎭
+P

⎧⎪⎪⎨⎪⎪⎩|ω̂ij | ≤

√√√√2ξ0

(
ω̂iiω̂jj + ω̂2

ij

)
log p

n
for all (i, j) : ωij = 0

⎫⎪⎪⎬⎪⎪⎭
≥ P

⎧⎨⎩sup
(i,j)

|ω̂ij − ωij |√
ωiiωjj + ω2

ij

≤
√

2ξ log p

n

⎫⎬⎭− P

{
sup
(i,j)

∣∣∣∣∣ ω̂iiω̂jj + ω̂2
ij

ωiiωjj + ω2
ij

− 1

∣∣∣∣∣ > ε

}
,

which is bounded below by

P

⎧⎨⎩ sup
(i,j)

∣∣∣ωora
ij − ωij

∣∣∣√
ωiiωjj + ω2

ij

≤
√

2ξ1 log p

n

⎫⎬⎭−
⎡⎢⎣ P

{
sup(i,j)

∣∣∣ωora
ij − ω̂ij

∣∣∣ > C1s
log p
n

}
+

P

{
sup(i,j)

∣∣∣∣ ω̂iiω̂jj+ω̂2
ij

ωiiωjj+ω2
ij
− 1

∣∣∣∣ > ε

} ⎤⎥⎦ = 1+o (1) ,

where s = o
(√

n/ log p
)
implies s log pn = o

(√
(log p) /n

)
.

B.2. Proof of Theorem 8. Due to the limit of space, we follow the line of the proof

of Theorems 2 and 3, but only give necessary details when the proof is different. As we

explained before the statement of the theorem, the coefficient vectors in regressing a pair

of observed variables against other observed variables are not sparse enough in the latent

variable graphical model for direct application of Theorems 2 and 3. Our strategy is to

decompose the coefficients into two parts,

(87) βO\A,A = SO\A,AΩ
−1
A,A − LO\A,AΩ

−1
A,A = βS

O\A,A−βL,

with βS
O\A,A = SO\A,AΩ

−1
A,A and βL

O\A,A = LO\A,AΩ
−1
A,A, and define a biased model

(88) XA = XO\AβS
O\A,A +

(
εA −XO\AβL

O\A,A

)
= XO\AβS

O\A,A + εSA,

with εSA = εA −XO\AβL
O\A,A. We then define two oracle estimators of ΘA,A as

(89) Θora
A,A = εTAεA/n, Θora,S

A,A =
(
εSA
)T (

εSA
)
/n.

For m ∈ A, we treat βS
O\A,m as a target regression coefficient vector. As the 
2 size of

the bias is bounded by ‖βO\A,m − βS
O\A,m‖ = ‖βL

O\A,m‖ � (an/n) log p with an → 0 by
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(48), Theorem 10 (iii), Theorem 11 (ii) and Proposition 1 can be used to obtain (16), (17)

and (18) with {Ac, βAc,A, β̂Ac,A} replaced by {O \ A, βS
O\A,A, β̂O\A,A}. Moreover, by (48)

and the concentration inequality for χ2
n, we have

P

{
‖XO\AβL

O\A,m/n1/2‖ > C1λ
}
= o(p1−δ),

so that by the union bound∥∥∥XT
O\Aε

S
A/n
∥∥∥
∞

≤
∥∥∥XT

O\AεA/n
∥∥∥
∞

+
∥∥∥XT

O\AXO\AβL
O\A,A/n

∥∥∥
∞

≤ C0λ+
∥∥∥XO\AβL

O\A,A/n
1/2
∥∥∥

≤ C1λ

happens with at least probability 1 − o(p1−δ) as in the proof of Theorem 2 (i) and the

proof of (74) in Proposition 1. Thus, as in the proof of Theorem 2 (i), we have

P

{∥∥∥Θ̂A,A −Θora,S
A,A

∥∥∥
∞

> C1kn,pδ(log p)/n
}
= o(p1−δ).

Conditionally on XO\AβL
O\A,m with m ∈ A, εTmXO\AβL

O\A,m has the Gaussian distribution

with mean 0 and variance θmm‖XO\AβL
O\A,m‖2. It follows that

P

{∣∣∣εTmXO\AβL
O\A,m/n

∣∣∣ > C1

√
2δ(log p)/nλ

}
= o(p1−δ).

Consequently, due to εA −XO\AβL
O\A,A = εSA, we have

P

{∥∥∥Θora,S
A,A −Θora

A,A

∥∥∥
∞

> 3C1λ
2
}
= o
(
p−δ+1

)
.

By triangle inequality, we further obtain

P

{∥∥∥Θ̂A,A −Θora
A,A

∥∥∥
∞

> 3C1λ
2 + C1kn,pδ(log p)/n

}
= o
(
p−δ+1

)
.

Then following the proof of Theorem 3 exactly, we establish Theorem 8. �

APPENDIX C: PROOF OF RESULTS IN LINEAR REGRESSION

C.1. Proof of Theorem 10. (i) This part of the theorem is a direct consequence of

Theorems 1 and 2 of Sun and Zhang (2012a). Specifically, we have P

{
‖Z̃‖∞ > λ∗

}
≤ 2ε̃1

by Lemma 17 of Sun and Zhang (2013) for the correlation vector in (59).

(ii) We modify the proof as follows. Let λ∗,0 = Ln−3/2(k/p̃), ε2 ∈ [ε1, ε] and

J = {j : |Z̃j | > (1 + ε2)λ∗,0} ∪K(90)
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with the set K in (60). Consider the Lasso estimator at an oracle penalty level σoraλ,

γ̂(λ) = argmin
γ

{
‖Ỹ − X̃γ‖2

2n
+ σoraλ‖γ‖1

}
,

with λ > (1 + ε2)λ∗,0. The Karush-Kuhn-Tucker conditions assert that

X̃T
j

(
Ỹ − X̃γ̂(λ)

)
/n

⎧⎨⎩= σoraλ sgn(γ̂j(λ)) γ̂j 
= 0

∈ σoraλ[−1, 1] ∀j.

Let h = (γtarget − γ̂(λ))/σora, b = λ + λ∗, c = 2λ
√

(2/n) log p̃(s1 − |K|) and ξλ =

b/(λ− (1 + ε2)λ∗,0). Multiplying h to both sides of the KKT conditions yields

‖X̃h‖2/n ≤ (1 + ε2)λ∗,0‖hJc‖1 + λ∗‖hJ‖1 + λ‖γ̂(λ)/σora‖1 − λ‖γtarget/σora‖1

when ‖Z̃‖∞ ≤ λ∗. Under Cond1 in (60), 2λ‖γtargetJc /σora‖1 ≤ c, so that

‖X̃h‖2/n+ (b/ξλ)‖hJc‖1 ≤ c+ b‖hJ‖1.(91)

This matches inequality (A1) in Sun and Zhang (2012a) with h = β̂ − w. As the proof

of Theorems 1 and 2 of Sun and Zhang (2012a) is based on their (A1), their proof still

yields (56), (57) and (58) with s = s1 + s2, when P {|J \K| ≥ s2} ≤ ε̃1 and (61) holds

with α ≥ √2ξλ0 . Let ε2 = ε1. The condition on α certainly holds as

√
2ξλ0 =

√
2

(1 + ε)Ln−3/2(k/p̃) + Ln−3/2(ε̃1/p̃)
(1 + ε)Ln−3/2(k/p̃)− (1 + ε1)Ln−3/2(k/p̃)

=

√
2

ε− ε1

(
1 + ε+

L1(ε̃1/p̃)

L1(k/p̃)

)
.

For the condition on |J |, Proposition 10 of Sun and Zhang (2013) with m = s2 yields

P

{
|J \K| ≥ s2

∣∣∣Cond3} ≤ P

⎧⎨⎩ max
|J ′|≤s2

∑
j∈J ′

(|Z̃j | − λ∗,0)2+ ≥ ε21λ
2
∗,0s2

∣∣∣∣Cond3
⎫⎬⎭

≤ e1/(4n−6)
2
ε̃1.(92)

(iii) For γtarget 
= γ, we need to change the proof of (ii) to bound Z̃target, where

Z̃target = X̃T (Ỹ − X̃γtarget)/(
√
n‖Ỹ − X̃γtarget‖).

More precisely, we need to bound ‖Z̃target‖∞ and the size of

J = {j : |Z̃target
j | > (1 + ε2)λ∗,0} ∪K.
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Note that σora = ‖Ỹ − X̃γtarget‖/√n here. When ‖Z̃‖∞ ≤ λ∗ and Cond4 holds,

∥∥∥Z̃target − Z̃
∥∥∥
∞

≤
∣∣∣∣∣1− ‖Ỹ − X̃γ‖

‖Ỹ − X̃γtarget‖

∣∣∣∣∣ ‖Z̃‖∞ +
‖X̃T X̃(γtarget − γ)‖∞√

n‖Ỹ − X̃γtarget‖
≤ ‖X̃(γtarget − γ)‖{√nσora}−1(λ∗ + 1)

≤ (2/C4)
√

n−1 log(p̃/ε̃1)

≤ min(
√
2− 1, ε2 − ε1)λ∗,0.

The last inequality above is a consequence of the condition on C4 and the definition of

λ∗,0. This leads to (91) with b = λ+
√
2λ∗ instead of b = λ+ λ∗. However, we still have

√
2ξλ0 =

√
2

ε− ε2

(
1 + ε+

√
2L1(ε̃1/p̃)

L1(k/p̃)

)
≤ α

with the modified α. For |J ′| ≤ s2, the bound ‖Z̃target − Z̃‖∞ ≤ (ε2 − ε1)λ∗,0 gives√∑
j∈J ′

(|Z̃target
j | − λ∗,0)2+ ≤

√∑
j∈J ′

(|Z̃j | − λ∗,0)2+ + (ε2 − ε1)λ∗,0
√
s2,

so that P

{
|J \K| ≥ s2, ‖Z̃‖∞ ≤ λ∗,Cond4

∣∣∣ Cond3} ≤ e1/(4n−6)2 ε̃1 by (92). This com-

pletes the proof. �

C.2. Proof of Theorem 11. Let P̂ be the orthogonal projection to the linear span

of {X̃k, k ∈ Ŝ}. We have σ̂2 − (σ̂lse
)2

=
∥∥P̂(Ỹ − X̃γ̂

)∥∥2/n =
∥∥X̃(γ̂lse − γ̂

)∥∥2/n, which
implies the identity in (66). Moreover, the KKT conditions for the lasso give

X̃T
k X̃
(
γ̂lse − γ̂

)
/n = X̃T

k

(
Ỹ − X̃γ̂

)
/n = σ̂λ0 sgn(γ̂k)

for all k ∈ Ŝ. Consequently, we have

φ2
comp

(
0, Ŝ, X̃

)
‖γ̂lse − γ̂‖21/|Ŝ| ≤

∥∥X̃(γ̂lse − γ̂
)∥∥2/n ≤ σ̂λ0‖γ̂lse − γ̂‖1,

which implies the inequalities in (66) and (67).

For C0sδ(log p̃)/n ≤ (ε− ε3)/(1 + ε), the oracle inequality in (58) give

σ̂λ0

σora
≥ (1− C0sδ(log p̃)/n)(1 + ε)λ∗,0 ≥ (1 + ε3)λ∗,0.

Let J be as in (90) and K ′ ⊆ Ŝ \ J . For k ∈ K ′, the KKT conditions guarantee∣∣∣∣∣X̃T
k (X̃γtarget − X̃γ̂)

nσora

∣∣∣∣∣ =
∣∣∣∣∣X̃T

k (Ỹ − X̃γ̂)

nσora
− Z̃k

∣∣∣∣∣ ≥ σ̂λ0

σora
− (1 + ε2)λ∗,0 > (ε3 − ε2)λ∗,0.
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Thus, for |K ′| ≤ s3, Cond3 in (62) and the oracle inequality in (56) imply that

|K ′|(ε3 − ε2)
2λ2
∗,0 <

∑
k∈K′

∣∣∣∣∣X̃T
k (X̃γtarget − X̃γ̂)

nσora

∣∣∣∣∣
2

≤ C3C0sδ(log p̃)/n.

As λ∗,0 = Ln−3/2(k/p̃) = (n− 3/2)−1/2L1(k/p̃), it follows that

|K ′| < C3C0sδ(log p̃)/n

(ε3 − ε2)2λ2∗,0
≤ C3C0sδ(log p̃)

(ε3 − ε2)2L2
1(k/p̃)

≤ s3

This proves |K ′| < s3 for all K ′ ⊆ Ŝ \ J satisfying |K ′| ≤ s3, so that |Ŝ \ J | ≤ s3.

Consequently, (68) follows from the bound |J \ K| ≤ s2 in the proof of Theorem 10,

as s2 + |K| ≤ s. If in addition (69) holds, then the conclusions of Theorem 10 hold for{
γ̂lse, σ̂lse

}
by (66), (67), (68) and (58). �

C.3. Proof of Proposition 1. We need the following tail bound for the chi-squared

distribution with n degrees of freedom,

(93) P

{∣∣∣∣∣χ
2
(n)

n
− 1

∣∣∣∣∣ ≥ t

}
≤ 2 exp (−nt (t ∧ 1) /8) , ∀t > 0.

As diag(Σ)−1D has χ2
(n)/n diagonal elements, (93) directly implies (71). Similarly, as

‖X̃(γtarget − γ)‖2
(γtarget − γ)TΣ(γtarget − γ)

∼ χ2
(n),

n(σora)2

E(σora)2
∼ χ2

(n),

(93) also implies (74) and justifies the replacement of σora by
√

E(σora)2 or C∗ in (56)

and (57). It remains to prove (72) and (73).

It is well-known that for fixed α, δ > 1 and sufficiently small c0 > 0, the compatibil-

ity constant φcomp (α, J,X) is no smaller than a positive constant with high probability

1− o(p−δ) under the assumption |J |+ δ ≤ c0n/ log p for the Gaussian design X under the

specified condition. For a complete proof, please refer to Corollary 1 in Raskutti, Wain-

wright and Yu (2010), where the conclusion holds for the restricted eigenvalue, a lower

bound of the compatibility constant by its definition. See also Theorem 6 in Rudelson

and Zhou (2013) for an extension to design matrices with sub-Gaussian marginals. For

standardized sub-design matrix X̃, we just need to adjust the dimension from p to p̃ and

apply (93) to address the effect of standardization of design vectors. Thus, (72) holds.

The proof of (73) is simpler as the concentration inequality for the largest singular value

of the standard Gaussian matrix can be directly applied. See for example Theorem II.13

of Davidson and Szarek (2001) and Proposition 2 of Zhang and Huang (2008). �
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APPENDIX D: PROOF OF A LEMMA

D.1. Proof of Lemma 2. Now we establish the lower bound (81) for the total

variation affinity. Since the affinity
∫
q0 ∧ q1dμ = 1− 1

2

∫ |q0 − q1| dμ for any two densities

q0 and q1, Jensen’s Inequality implies[∫
|q0 − q1| dμ

]2
=

(∫ ∣∣∣∣q0 − q1
q0

∣∣∣∣ q0dμ)2

≤
∫

(q0 − q1)
2

q0
dμ =

∫
q21
q0

dμ− 1.

Hence
∫
q0 ∧ q1dμ ≥ 1− 1

2

(∫ q21
q0
dμ− 1

)1/2
. To establish (81), it thus suffices to show that

Δ =

∫
( 1
m∗
∑m∗

m=1 fm)2

f0
− 1 =

1

m2∗

∑
m,l

∫ (
fmfl
f0

− 1

)
→ 0.

The following lemma is used to calculate the term
∫
(fmfl/f0 − 1) in Δ. Let gs be the

density function of N (0,Σs), s = 0,m or l. Then

(94)

∫
gmgl
g0

=
[
det
(
I − Σ−10 (Σm − Σ0) Σ

−1
0 (Σl − Σ0)

)]−1/2
.

Let Σm = Ω−1m for 0 ≤ m ≤ m∗. It follows from (94) that∫
fmfl
f0

=

(∫
gmgl
g0

)n

= [det (I − Ω0 (Σm − Σ0) Ω0 (Σl − Σ0))]
−n/2 .

Let J(m, l) be the number of overlapping a between Σm and Σl in the first row. Recall the

simple structures of Ω0 (76) and Σm − Σ0 by our construction. Elementary calculations

yield that

det (I − Ω0 (Σm − Σ0) Ω0 (Σl − Σ0)) = (1− 1 + b2

(1− b2)2
Ja2)2,

which is 1 when J = 0. Now we set d = 1+b2

(1−b2)2 > 1 to simplify our notation. It is easy to see

that the total number of pairs (Σm,Σl) such that J(m, l) = j is
(

p−2
kn,p−2

)(kn,p−2
j

)( p−kn,p

kn,p−2−j
)
.

Hence,

Δ =
1

m2∗

∑
0≤j≤kn,p−2

∑
J(m,l)=j

∫ (
fmfl
f0

− 1

)

=
1

m2∗

∑
0≤j≤kn,p−2

∑
J(m,l)=j

(
(1− dja2)−n − 1

)
≤ 1

m2∗

∑
1≤j≤kn,p−2

(
p− 2

kn,p − 2

)(
kn,p − 2

j

)(
p− kn,p

kn,p − 2− j

)
(1− dja2)−n.(95)

Note that

(1− dja2)−n ≤ (1 + 2dja2)n ≤ exp
(
n2dja2

)
= p2dτ1j
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where the first inequality follows from the fact that dja2 ≤ dkn,pa
2 ≤ 1+b2

(1−b2)2 τ1C0 < 1/2.

Hence,

Δ ≤
∑

1≤j≤kn,p−2

(kn,p−2
j

)( p−kn,p

kn,p−2−j
)(

p−2
kn,p−2

) p2dτ1j

=
∑

1≤j≤kn,p−2

1

j!

(
(kn,p−2)!

(kn,p−2−j)!
)2

(p−2)!(p−2kn,p+2+j)!

[(p−kn,p)!]
2

p2dτ1j

≤
∑

1≤j≤kn,p−2

(
k2n,pp

2dτ1

p− kn,p

)j

,

where the last inequality follows from the facts that
(kn,p−2)!

(kn,p−2−j)! is a product of j terms

with each term less than kn,p and
(p−2)!(p−2kn,p+2+j)!

[(p−kn,p)!]
2 is bounded below by a product of j

terms with each term greater than (p− kn,p) . Recall the assumption (32) p ≥ kvn,p. So for

large enough p, we have p− kn,p ≥ p/2 and

k2n,p
p2dτ1

p− kn,p
≤ 2p2/ν · p

2dτ1

p

≤ 2p−(v−2)/(2v),

where the last step follows from the fact that τ1 ≤ (ν − 2) / (4νd). Thus

Δ ≤ 2
∑

1≤j≤kn,p−2
p−j(v−2)/(2v) → 0,

which immediately implies (81).
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