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In this supplement we collect proofs of Theorems 1-3 in Section 2,
Theorems 6, 8 in Section 3 and Theorems 10-11 as well as Proposition

1 in Section 4.

APPENDIX A: PROOF OF THEOREMS 1-3

A.1. Proof of Theorems 2-4. We will only prove Theorems 2 and 3. The proof of

Theorem 4 is omitted as it is similar to that of Theorems 2 and 3.

A.1.1. Proof of Theorem 2. We first prove (i). As 6;; and 6;; are uniformly bounded,
the large deviation probability in (20) follows from (18) for 65/ and 627*. We then need
only to consider the entry #7“. Recall that D = diag(X?X/n) and X 4¢ is independent
of €4. It follows that (Xﬁfl/Q)zem/n ~ N(0, 0 /n) for all m € A, so that

p°(p—2)
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by the union bound. Thus, it follows from (16) and (17) that

ora

= [l /n—€e;j/n]

(61‘ + X e (ﬂz‘ — @))T (ej + Xae (ﬂj - Bg)) /n— €l €e/n

o], I8 -],
+ D™ e n]_ [0 6~ B
(8 5)|| - [ae (- 5) |/

< 2¢/001mm(2/n) log pCos+/8(log p) /n + Cosd(log p)/n

= Cys6(logp)/n

with at least probability 1 — 2p~9+leq — 2p~9+1 /\/2Togp, and (20) follows.

As ©4 4 has a bounded spectrum, the functional (x; (©4,4) = (@Z}A) y is Lipschitz in
a neighborhood of © 4 4 for k,1 € A, so that (21) is an immediate consequence of (20).

For part (ii), we note that the regression model (7) has Gaussian error and Gaussian
design, and the complexity of Sac,,, m € A, is controlled by s\(2) < s < ¢on/logp up
to a constant factor. Moreover, as the spectrum of the population covariance matrix is
contained in [1/M, M], the noise level and the spectrum of the population Gram matrix
EX%:X ¢ /n are all contained in [1/M, M] in the linear model. Thus, part (ii) follows
from Theorem 10 (i), Theorem 11 (ii) and Proposition 1.

05 O

111 or ora ora ora ora __
For part (iii), define random vector n (77” N AN ) where np]® = /n—E—s— Joir
The following result is a multidimensional version of KMT quantile inequality: there ex-
ist some constants Dy, ¥ € (0,00) and random Gaussian vector Z = (Zy, Z;j, Zj;) ~
N (0, f)) with ¥ = Cov(n?"®) such that whenever |Zy| < 9/ for all kl, we have

Dy 2 2 2
(82) 7”7 = Z]| o < N I+ 22+ 75+ 73) .

See Proposition [KMT] in Mason and Zhou (2012) for one dimensional case and consult
Einmahl (1989) for multidimensional case. Note that \/nn°® can be written as a sum of
n i.i.d. random vectors with mean zero and covariance matrix f], each of which is sub-
exponentially distributed. Hence the assumptions of KMT quantile inequality in literature
are satisfied. With a slight abuse of notation, we define © = (6;;,0;;,6;;). To prove the

desired coupling inequality (23), we use the Taylor expansion of the function w;; (©) =



—0i;/ (9@9]7- - «9%) to obtain

(83) = (Vw;; (0),07"—0)+ > Rs(67") (0 — 0",

18]=2
The multi-index notation of g = (1, 52, 33) is defined as 3| = >, Bk, zf = I :cf’“ and
DA f (x) = W. The derivatives can be easily computed. To save the space, we
omit their explicit formulas. The coefficients in the integral form of the remainder with
|| = 2 have a uniform upper bound ’RB ( ore )‘ < 2max maxeecp Dw;; (©) < Cs,

where B is some sufficiently small compact ball with center © when ©°7 is in this ball

la|=2

B, which is satisfied by picking a sufficiently small value ¥ in our assumption ||n°"*|| <

U/n. Recall that £{7* and n°"* are standardized versions of ( ora — wij> and (@ — @),

Consequently there exist some deterministic constants hi, ho, h3 and Dg with |5] = 2 such

ora ora

that we can rewrite (83) in terms of £/ and 7°"* as follows,

DsRs (077%)

ora\f
Jn (n”)

ora _ hl,’,]m“a + h‘277ioja + hg,’,]ora + Z
|8]=2

which, together with Equation (82), completes our proof of Equation (23),

3
Cs D1
ke — 2] < (S el |12 =l + S e < DL (4 22+ 2+ 2
< (Z o D )

where constants C3, D; € (0,00) and Z' = hiZ; + haZs + hsZ3 ~ N (0,1). The last
inequality follows from ||n°%||* < Cy (ZZQZ + Zl-2j + Z;j) for some large constant C4, which

can be shown using (82) easily.

A.1.2. Proof of Theorem 3. The triangle inequality gives

ora ora
|+ |wff® = wis]

IN

Wij — wij|

QA,AH

ora

AA
o0

IN

+[1907% — Qaall,

[ee]

From Equation (21) we have

. 1
]P{HQA,A = QY% > Cis ng} =0 (p*‘sﬂ) :
oo n
ora

i and HQO"“ QAAH respectively. Let ®(t) be
oo
the N (0,1) distribution function. For the constant C' > 0, we apply (23) to obtain

Now we give a tail bound for |w

— wZ]

P{|x5?| > C}
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IN

e Dy 2 2 2 c
P{maXﬂZle > 19\/71} + P <2) +P{\/ﬁ (1 +Zii +Zij +ij) > 5

< o(1) + 2exp (—02/8) ,

according to the inequality ® (z) < 2exp (—2?/2) for > 0 and the union bound of three

Gaussian tail probabilities. This immediately implies that for large C4 and large n,

1 3
P{|w;’]?"a —wij| > 04\/;} < ZE,

which, together with (21), yields that for Co > Cy + Cly,

1 1
P{|@ij—wij|>C’2maX{s ng, }}Se
n n

Similarly, Equation (23) implies

P{|nge| > CViogp) < B {max{|Zul} > 9y} + @ (@)

Dq 2 2 2 Cy/logp
HP{\/E (I+Z5+25+7) > 5

= 0 (p’CQ/g) :

where the first and last components in the first inequality are negligible due to logp < con
with a sufficiently small ¢y > 0, which follows from the assumption s < con/logp. That

immediately implies that for C5 large enough,

1
R e

which, together with (21), yields that for C5 > C] + Cs.

N 1 |
IP’{HQA,A—QA,A“ >Cgmax{s ng,\/(m)}}:o(p‘““l).
[e%e] n n

Thus we have the following union bound over all (12)) pairs of (4, 7),

IF’{HQ - QHOO > ('3 max {Sloi;p’ loip}} =p?/2-0 (pﬂm) — 0 (p75+3> .

Write

Vit (aa = Q) = Vi (Qaa — QF%) + Vit (994 — Qa)
NG

log p

Under the assumption s = o ( ) , noting that wjw;; + w?j is bounded, we have

\/ﬁHQA,A = Q%%

LO = 0p(1),



which together with Equation (23) further implies

\/n/ (wiiwjj + ng) ((Z)ij — wij) 2 \/n/ (wiiwj'j + w%) (wf]m — wij) 2) N(O, 1) .

As an immediate consequence, Fj; is a consistent estimator of F;, which is bounded above

and below by some positive constants. Thus we obtain Fij J/Fij = 1.1

A.2. Proof of Theorem 1. The probabilistic results (i) and (ii) as well as (3) are
the immediate consequences of Theorems 2 and 5. We only need to show the minimax
rate of convergence result (2). According to the probabilistic lower bound result (35) in

Theorem 5, we immediately obtain that

knplo 1
inf  sup E|@;; —wij| > g max C’ngp,Cg — .
Wig gO(Mykn,p) n n
Thus it is enough to show there exists some estimator of w;; such that it attains this upper
bound. More precisely, we have defined a truncated estimator based on the w;; in (10) to

control the small event in which © A,A is nearly singular:

@i = sgn(w;;) - min {|@q;| , log p} .

Define the event G = { Wij — w%m < C’lw, ‘wfjm‘ < 2M} . Note that the Equations

(20) and (23) in Theorem 2 imply P{G°} < C (p~°*! + exp (—cn)) for some constants C

and c¢. Now according to the variance of inverse Wishart distribution, we pick § > 2¢ + 1

to complete our proof as follows:

E ’(:J,j — w,-j| S E (l(:)lj — w@?j?"“‘ 1 {G}) + E (}(:JU — wf}"“} 1 {GC}) + E |wlq]ra - wij|
I 1/2 1/2
< cler (P{GVE (logp + [w?])*)  + (B (wg — wyj)?)
knplogp st 1
< ClT'FCQp 2 10gp+03\/ﬁ

< (C'max Fnp log p \/T
— n ) n )

where O3, C3 and C” are some constants and the last equation follows from the assumption
n=0 (pg) .
APPENDIX B: PROOF OF THEOREMS IN APPLICATIONS

B.1. Proof of Theorem 6. When § > 3, from Theorem 2 it can be shown that the

following three results hold:



6 Z. REN ET AL.

(i) For any constant € > 0, we have

Ay ~2

w“w]] + wl] 1
2

(i,j) |Wiiwjj + Wi

(84) P {sup

(ii) There is a constant C > 0 such that

1
(85) ]P’{Sup|o.)i0]m—b?)ij| > Cis in} - 0;
(i)

(iii) For any constant 2 < &;, we have

ora .
wij — Wij

2611
(86) P< sup > 4/ $1logp — 0.
(i3) 4 [wiiw;jj + w?j n

In fact, under the assumption 6 > 3, Equation (21) in Theorem 2 and the union bound

over all pair (i,7) imply the second result (85), which further shows the first result (84)
because that w;; and w;; are consistent estimators and wy;w;; + w% is bounded below and

above. For the third result, we apply Equation (23) from Theorem 2 and pick 2 < & < &;
and a = /& — /& to show that

IP’{ |/€ZOJT“’ >\/2§110gp} < P{max{|Zkl|}>79\/ﬁ}+<i><\/2§glogp>

D
—HP’{\/% U+ 22+ 25+ 23) > a\/ZIng}
1

where the last inequality follows from logp = o(n). The third result (86) is thus obtained
by the union bound with 2 < &.

As the proof of (41) and (42) are nearly identical to each other, we only prove that (42)
in Theorem 6 is just a simple consequence of results (i), (ii) and (iii). Set ¢ > 0 sufficiently

small and & € (2,&) sufficiently close to 2 such that 2v/2&y — \/2& (1 +¢) > /2 and



&(1—¢e)>¢& and 2 < & < & We have

P (S(unr) = S())
= ( th’";«éoforall (i,7) : wij #O) +P( thT—Oforall (, ):wij:0>

2 (wuwﬂ + w3 ) log p

=P ‘d)zg’ > " for all (Z,]) D Wi #0
2€O (wl’bw]j + w ) logp
+P < |wy5] < for all (4,7) : wi; =0
n
~ O ~2
> sup @i — i </ % logp { 7%1%] Bl > 5} ;
(4.9) wiiwjj + wi @@, J) wiiWjj + w

which is bounded below by

ora

10gp
ww — Wij UJ” > Cls }+

P

petoss)| | P

P¢ sup < Sulogp { P IT =1+o0(1),
(iyj),/wiiwjj—l—w?j n P{ ‘”_1‘>5}

Sup(Z J) WiiWsj +w?

where s = o (W) implies 522 = ¢ ( (log p) /n) A

B.2. Proof of Theorem 8. Due to the limit of space, we follow the line of the proof
of Theorems 2 and 3, but only give necessary details when the proof is different. As we
explained before the statement of the theorem, the coefficient vectors in regressing a pair
of observed variables against other observed variables are not sparse enough in the latent
variable graphical model for direct application of Theorems 2 and 3. Our strategy is to

decompose the coefficients into two parts,

(87) Bovaa = Sona a4 — Lovaaf 'y = 58\A,A—5L,

with Bg\A’A = SO\A,AQE}A and Bé\A,A = LO\A,AQZ,IA’ and define a biased model
(88) Xa= XO\Aﬁg\AA + (EA - XO\Aﬁé\AA) = XO\ABES;\A,A +€3,

with ei =€4 — XO\Aﬂé\A,A' We then define two oracle estimators of ©4 4 as
(89) Ah = egeA/n, @Oms = (ei)T (ei) /n.

For m € A, we treat Bg\A . as a target regression coefficient vector. As the £ size of

the bias is bounded by [|Bo\a,m — ﬁg\A’mH = Hﬁg\AmH < (an/n)logp with a, — 0 by
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(48), Theorem 10 (iii), Theorem 11 (ii) and Proposition 1 can be used to obtain (16), (17)

and (18) with {AC,BAC,A,BAc,A} replaced by {O \ Aaﬂg\AAaBO\A,A} Moreover, by (48)
and the concentration inequality for x2, we have

P{IX0\aB5 /22 > C1A} = o1,

so that by the union bound

ng\,axGi/TlHOO HXS\AM/”HOO + HXS\AXO\Aﬁé\A,A/nHOO
Co + HXO\Aﬁé\A,A/”lﬂH

CiA

ININ A

1—6)

happens with at least probability 1 — o(p as in the proof of Theorem 2 (i) and the

proof of (74) in Proposition 1. Thus, as in the proof of Theorem 2 (i), we have
P{H@A,A - @XCZSHOO > Clkn,p5<1ogp)/n} =o(p'?).

Conditionally on XO\Aﬂé\A m Withm € A, e%XO\Aﬂé\A m has the Gaussian distribution

with mean 0 and variance 0, || Xo\ Aﬁé\ Amll?- It follows that

P

Consequently, due to €4 — XO\Aﬂé\A a= ei, we have

X085 am/n| > C1/20(l0gp) /A } = o(p'~?)

ora,S ora
P{H@A,A — 944

> 301)\2} =0 (p_5+1) .
oo
By triangle inequality, we further obtain

P{[614 - 0%

> 3C1A% + Ciky 0 (log p) /n} — 0 (p*“l) .
o0
Then following the proof of Theorem 3 exactly, we establish Theorem 8. U

APPENDIX C: PROOF OF RESULTS IN LINEAR REGRESSION

C.1. Proof of Theorem 10. (i) This part of the theorem is a direct consequence of
Theorems 1 and 2 of Sun and Zhang (2012a). Specifically, we have P{HZHOO > )\*} < 26
by Lemma 17 of Sun and Zhang (2013) for the correlation vector in (59).

(ii) We modify the proof as follows. Let Ao = L,,_3/2(k/D), €2 € [e1,¢] and

(90) J=1{j:1Zj| > 1+ e) o} UK



with the set K in (60). Consider the Lasso estimator at an oracle penalty level o"®,

vV Y Al2
+(0) = arg min {ww

y

07’(1)\
4 ||7|1},

with A > (1 + £2) Ay 0. The Karush-Kuhn-Tucker conditions assert that

=0 Asgn(Y;(A)) 45 #0
€ 0orA[—1,1] V.

XT (Y — X3(N) /n

Let h = (y'9¢0 — (X)) /0", b = X + X\, ¢ = 2)\\/(2/n)logp(s1 — |K|) and &, =
b/(A — (14 e2)As0). Multiplying h to both sides of the KKT conditions yields

IXh[2/n < (1+ e2)Asollhelly + A Byl + MAN) /07y = Ay foor |y
when [|Z]|os < A*. Under Cond; in (60), 2A]|7'%9 /o%||; < ¢, so that
(91) IXh|%/n + (b/&x) el < e+ blhyl).

This matches inequality (A1) in Sun and Zhang (2012a) with h = 3 — w. As the proof
of Theorems 1 and 2 of Sun and Zhang (2012a) is based on their (A1), their proof still
yields (56), (57) and (58) with s = s1 + s, when P{|J \ K| > s2} < € and (61) holds
with o > \/ﬁf Ao- Let €2 = 1. The condition on « certainly holds as

o) (1+¢€)Ln_3/2(k/P) + Ly_3/2(€1/D)
\}1 +¢€)Ln-_3/2(k/p) — (1 +€1)Ly,_3/2(k/p)

_ 2 Li(e1/p)

I (1+e+ Ll(kz/ﬁ))'

For the condition on |J|, Proposition 10 of Sun and Zhang (2013) with m = sg yields

V26,

]P’{|J\K| > 32) Condg} < P ‘ﬁax (|ZJ| — o)t > €102 52| Conds
"<sg “ ’
- TjeJ’

(92) < MUn=6)7
(iii) For 4/79¢t £ ~ we need to change the proof of (ii) to bound Z/“"9¢ where
Ztarget _ XT(? o X,Ytarget)/(\/ﬁ”? - X,ytargetn)'

More precisely, we need to bound [|Z79¢||, and the size of

J={j 12" > (1+e2) Ao} UK.
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Note that 0™ = ||[Y — X~!9¢|| /\/n here. When ||Z]|oc < A* and Cond holds,

1Z]|o0 +

Hztarget B ZH N AT \ _
00 |Y _ X,ytargetH \/EHY _ X,ytargetH

HX(,ytarget _ ,Y)H{\/ﬁo_ora}fl(xk + 1)
(2/Ca)/n~"log(p/e1)
min(\@ — 1, g9 — 51))\*’0.

'1 Y -Xy] |XTX (5179 — ) oo
|

ININ A

The last inequality above is a consequence of the condition on Cy4 and the definition of
As 0. This leads to (91) with b=\ + V2)* instead of b = \ + \*. However, we still have

V26, = V2 (1+€+W> <a

N E—E&9
with the modified . For |J'| < sy, the bound [|Z79¢t — Z|| o, < (£2 — £1)As 0 gives

D UZE 9 = Mo)d < D (Z5] = X0) + (£2 — €1) Aov/52,
jeJ’ jeJ’

so that ]P’{|J\K| > 59, | 2|0 < )\*,Cond4‘ Condg} < V/Un=6)"¢ 1y (92). This com-
pletes the proof. O

C.2. Proof of Theorem 11. Let P be the orthogonal projection to the linear span
of {Xy,k € S}. We have 62 — (55¢)* = ||P(Y — X3)||°/n = |X(5% — 3)|*/n, which
implies the identity in (66). Moreover, the KKT conditions for the lasso give

XEX (3" —4)/n = X[ (Y = X3) /n = 6Xosgn(n)
for all k € S. Consequently, we have

G (0.8, X ) 137 = 313/191 < [ X (5" = 4)[*/n < 620013 = A1,

which implies the inequalities in (66) and (67).
For Cyso(logp)/n < (e —e3)/(1 + €), the oracle inequality in (58) give

oo
O—OT(Z

> (1= Cpsé(logp)/n)(1+e)Ao > (1 +e3)Ap0.

Let .J be as in (90) and K’ C S\ J. For k € K, the KKT conditions guarantee

7|5

0—07‘(1

(1 + 52))\*’0 > (53 - 52))\*70.

no—ora nO-O’I’(l

|X%(X7ta'rget o }N(;?)

:|>~<Z<ﬂ?—5<fy>~
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Thus, for |K’| < s3, Conds in (62) and the oracle inequality in (56) imply that

~ o~ ~ 2
Xz (X,ytarget _ X’ﬁ/)

nO-O’I‘CL

[K'|(e3 —e2)?A20 < )
KeK’

< 03008(5(10gf5)/n.

As Ao = Ly_32(k/P) = (n — 3/2)7V/2Ly1(k/p), it follows that

C3Cyso(logp)/n - C3Chs0(logp)

K'| < <
] (e3—€2)?A\2y ~ (€3 —e2)Li(k/p

= 83

This proves |K’| < s3 for all K’ C S\ J satisfying |K’| < s3, so that |S\ J| < s3.
Consequently, (68) follows from the bound |J \ K| < s in the proof of Theorem 10,
as s + |K| < s. If in addition (69) holds, then the conclusions of Theorem 10 hold for
{3's¢,6%5¢} by (66), (67), (68) and (58). a

C.3. Proof of Proposition 1. We need the following tail bound for the chi-squared

distribution with n degrees of freedom,

(93) P {

As diag(X)™!D has X%n) /n diagonal elements, (93) directly implies (71). Similarly, as

2

Xin
m
n

Zt} <2exp(—nt(tA1l)/8),Vt>D0.

||)~((,yta7‘get _,7)||2 N 9 n(gora 2 N 9
(,ytarget _ ,Y)TE(,ytarget _ ’Y) X(”)’ E(O-ora)Q X(”)’

(93) also implies (74) and justifies the replacement of ¢ by \/E(¢9®)2 or C, in (56)
and (57). It remains to prove (72) and (73).

It is well-known that for fixed «, § > 1 and sufficiently small ¢y > 0, the compatibil-
ity constant ¢comp (@, J,X) is no smaller than a positive constant with high probability
1—o(p~%) under the assumption |J| +§ < con/log p for the Gaussian design X under the
specified condition. For a complete proof, please refer to Corollary 1 in Raskutti, Wain-
wright and Yu (2010), where the conclusion holds for the restricted eigenvalue, a lower
bound of the compatibility constant by its definition. See also Theorem 6 in Rudelson
and Zhou (2013) for an extension to design matrices with sub-Gaussian marginals. For
standardized sub-design matrix )~(, we just need to adjust the dimension from p to p and
apply (93) to address the effect of standardization of design vectors. Thus, (72) holds.

The proof of (73) is simpler as the concentration inequality for the largest singular value
of the standard Gaussian matrix can be directly applied. See for example Theorem I1.13

of Davidson and Szarek (2001) and Proposition 2 of Zhang and Huang (2008). O
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APPENDIX D: PROOF OF A LEMMA

D.1. Proof of Lemma 2. Now we establish the lower bound (81) for the total
variation affinity. Since the affinity [go Aqidp=1—35 f lgo — q1| du for any two densities
go and g1, Jensen’s Inequality implies

o] = ([ o) <[ 25

1/2
Hence [qoAqidp>1—3 (f ai du ) . To establish (81), it thus suffices to show that

oo B ()

The following lemma is used to calculate the term [ (fyfi/fo — 1) in A. Let g be the
density function of A (0, %), s = 0,m or [. Then

9 —q1
q0

(94) % = [det (I — 35" (S — S0) B (51— 20))] 2.

Let X, = Q;} for 0 < m < my. It follows from (94) that
fmfl o ImYi " o [d (I —Q (E 0 Q (2 ) ]—71/2
e o ) T et (I — Qo (X — 2o) Qo (X1 — X0)) .

Let J(m,[) be the number of overlapping a between ¥, and ¥; in the first row. Recall the
simple structures of €y (76) and X, — Xo by our construction. Elementary calculations
yield that

L+ 5,
det(I—QO(Zm—20)90(21—20)):(1—m a) N
which is 1 when J = 0. Now we set d = -2 > 1 to simplify our notation. It is easy to see

(1-52)°
that the total number of pairs (X,,,%;) such that J(m,l) = j is (kf;EQ) (k”*”.fg)( p=knp )

J knp—2—j
_ 1 fmfl
A= L >/ <_1)

*O<]<knp 2 J(m,l)=j

= % Z Z (1 —dja®)™"—1)

*0<j<kn,p—2 J(m,l)=j

1 p—2 knp_2 p_knp . 2\—n
< — ’ ’ 1-— .
(95) - om? 2 (kn,p - 2)( J )(k‘n,p -2-7 (1~ dja”)

1Sj§kn,p_2

Hence,

Note that
(1 —dja®)™" < (14 2dja®)" < exp (n2dja?) = p*™J
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where the first inequality follows from the fact that dja® < dk, ya® < Co < 1/2.

(1 b2)2 T1
Hence,

(57 G 57 ni

A < >

2
1< <kn,p—2 (kf,pfz)

( (kn.p—2)! )2
(kn,p—2—7)! 2dr1 ]

1
- Z ﬁ (p—Q)!(p—Qk-n’p-i-Q-i-j)!p

1<k p—2 [(p—hn )12
J
k? deT1
S (k ,
1<j<kn p—2 P = Fnp
(kn,p—2)!

where the last inequality follows from the facts that o is a product of j terms

4 (=2 o= 2knpt-24)!
[(p—Fkn p)']
terms with each term greater than (p — k) . Recall the assumption (32) p > k;, . So for

—2-j)!
is bounded below by a product of j

with each term less than ky,, an

large enough p, we have p — k,, , > p/2 and

2dT1 2dT1

2 P 2102/;/ P

n.p
o —knp

IN

< 9p-(-2)/)

where the last step follows from the fact that 7 < (v — 2) / (4vd). Thus

A<z Y iR/ g

1<j<knp—2

which immediately implies (81). 1
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