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1. Definition of Γ−1/2 and Γ−1/2ΓeΓ
−1/2 when ξi > 0, for all i .

First, we show the range of Γ1/2, RΓ1/2 = {Γ1/2g : g ∈ L2(I)}, is equal to

(1.1) {f ∈ L2(I) :
∑

i

ξ−1
i |〈f, φi〉|2 <∞, f⊥ker(Γ)},

where {ξi, φi} are the eigenvalues and eigenfunctions of Γ.

Proof. If f = Γ1/2g and g ∈ L2(I), then f =
∑

k ξ
1/2
k 〈g, φk〉φk. Simple

calculations show

∑

i

1

ξi

∣

∣

∣

∣

∣

〈
∑

k

ξ
1/2
k 〈g, φk〉φk, φi〉

∣

∣

∣

∣

∣

2

=
∑

i

1

ξi

∣

∣

∣ξ
1/2
i 〈g, φi〉

∣

∣

∣

2
<∞,

and f⊥ker(Γ).
On the other hand, since {φk}∞k=1 and ker(Γ) = {ψk}∞k=1 span the L2(I)

space, f =
∑

k〈f, φk〉φk +
∑

k〈f, ψk〉ψk for any f ∈ L2(I). Under the condi-
tion f⊥ker(Γ), f can be simplified as

∑

k〈f, φk〉φk because 〈f, ψk〉 = 0 for
all k. To show there exists a g ∈ L2(I) such that Γ1/2g = f , we specifically
let g =

∑

k
1√
ξk
〈f, φk〉φk. Simple algebra shows that Γ1/2g =

∑

k〈f, φk〉φk
and ‖g‖2 =

∑

k ξ
−1
k |〈f, φk〉|2 < ∞. Therefore, Γ1/2g = f and g ∈ L2(I).

Thus, the range of Γ1/2 can be represented by (1.1).

1.1. Definition of Γ−1/2. Similar to He et al. (2003), we consider a subset
RΓ1/2 of L2(I), on which the inverse of a compact operator can be defined,
and for f ∈ RΓ1/2 we define

Γ−1/2f =
∑

i

ξ
−1/2
i 〈f, φi〉φi.
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Then, Γ−1/2 is in L2(I) and satisfies the usual properties of an inverse in
the sense that Γ1/2Γ−1/2f = f, for all f ∈ RΓ1/2 , and Γ−1/2Γ1/2g = g, for
all g ∈ RΓ−1/2 , the range space of Γ−1/2.

Thus Γ1/2 is a one-to-one mapping from the vector space RΓ−1/2 onto the
vector space RΓ1/2 .

1.2. Definition of Γ−1/2ΓeΓ
−1/2. Since Γ(s, t) =

∑

i ξiφi(s) ⊗ φi(t) and
Γe(s, t) =

∑

i,j E{E(Ai|y)E(Aj |y)}φi(s)⊗ φj(t),

Γ−1/2ΓeΓ
−1/2 =

∑

i,j

E{E(Ai|y)E(Aj |y)}
(ξiξj)1/2

φi(s)⊗ φj(t)

=
∑

i,j

E{AiE(Aj |y)}
(ξiξj)1/2

φi(s)⊗ φj(t).

In order for Γ−1/2ΓeΓ
−1/2(s, t) =

∑

k λkηk(s) ⊗ ηk(t) to be a well-defined
Hilbert-Schmidt operator, we need

∑

k λ
2
k < ∞. Because ηk is the k-th

eigenfunction of Γ−1/2ΓeΓ
−1/2, we have Γ−1/2ΓeΓ

−1/2ηk = λkηk and thus

it is not difficult to show that
∑

k λ
2
k < ∞ if

∑

i,j
E2{AiE(Aj |y)}

ξiξj
is finite.

Therefore,

(1.2)
∑

i,j

E2{AiE(Aj |y)}
ξiξj

<∞

is a sufficient condition for Γ−1/2ΓeΓ
−1/2 to be a well-defined Hilbert-Schmidt

operator.
Let βk(t) = Γ−1/2ηk be the e.d.r. direction. In order for βk(t) to be well

defined, we need ηk(t) ∈ RΓ1/2 , i.e.
∑

i ξ
−1
i |〈ηk, φi〉|2 < ∞. Then, for k ≥ 1,

we have

Γ−1/2ΓeΓ
−1/2ηk = λkηk =

∑

i,j

E{AiE(Aj |y)}
(ξiξj)1/2

〈φj , ηk〉φi.

From the definition of RΓ1/2 , we need

∑

i

1

ξi





∑

j

E{AiE(Aj |y)}
(ξiξj)1/2

〈φj , ηk〉





2

<∞
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to show ηk ∈ RΓ1/2 . By Cauchy-Schwarz inequality and that
∑

j〈φj , ηk〉2 =
1, we can show that

∑

i

1

ξi





∑

j

E{AiE(Aj |y)}
(ξiξj)1/2

〈φj , ηk〉





2

≤
∑

i

1

ξi

∑

j

E2{AiE(Aj |y)}
ξiξj

.

Therefore, ηk ∈ RΓ1/2 if

(1.3)
∑

i,j

E2{AiE(Aj |y)}
ξ2i ξj

<∞.

2. Simulation Studies. Since our method is applicable to both sparse
longitudinal data and functional data, we evaluate its finite sample perfor-
mance for both types of data through simulations. Without loss of general-
ity, we set the domain interval I as [0, 1]. Let X(t) be a standard Brownian
motion on [0, 1], we consider the following model:

(2.1) Y = 3 + exp(〈β(t),X(t)〉) + ǫ,

where β(t) =
√
2 sin(3πt/2), and the random error ǫ ∼ N(0, 0.12). The

standard deviation of ǫ may look small, but the range of exp(〈β(t),X(t)〉)
is around (0.5, 1.5) and thus the signal-noise ratio is about 10.

Two simulation studies were conducted. In simulation I, the data were
generated under both sparse and complete settings to evaluate the general
performance of the proposed approach. In simulation II, sparsely observed
data were generated with fixed Ni, the number of observations of subject i,
to evaluate the empirical convergent rate.

2.1. Simulation I. In each run, n sample trajectories, {Xi(t), i = 1, . . . , n},
are generated from Brownian motion on [0, 1]. This forms the complete data,
but for practical implementation we discretized the data to equally spaced
31 time-points, {t0, t1, . . . , t30}, with t0 = 0 and t30 = 1. Therefore, the
actual dense data set is {Xij = Xi(tij), i = 1, . . . , n, j = 1, . . . , 30} along
with its response Yi. To generate the sparse longitudinal data, we randomly
selected 2 to 10 observations from {t1, t2, . . . , t30}. This results in the longi-
tudinal data (Xi1, . . . ,XiNi) for the ith subject at time points (ti1, . . . , tiNi),
where Ni follows a uniform distributions on {2, 3, . . . , 10}. The simulation
consists of 100 runs and Table 1 summarizes the numerical findings when n
is 100 and 200. As a comparison, we also include the results of the smoothed
functional inverse regression approach in Ferré and Yao (2005), which is for
complete data.
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The first comparison is based on the correlation between 〈β(t),X(t)〉 and
〈β̂(t),X(t)〉, i.e. the correlation between the projection of X(t) on the real
e.d.r. direction and that on the estimated e.d.r. direction. Averages of those
correlations are reported in the third column of Table 1. The results suggest
that our approach generally produces high correlations and for complete
data have larger correlations than those from Ferré and Yao (2005). The
rest comparisons are based on the Integrated Squared Bias (ISB), Integrated
Variance (IVAR), and Integrated Mean Square Error (IMSE) (or Mean of
Integrated Square Error(MISE)). The Appendix contains details of those
definitions. The averages of these statistics over the 100 simulation runs are
reported in Columns 4-6 of Table 1. Expectedly, the results for complete
data are better than those for sparse data and the results for larger sample
sizes are better. For complete data, our procedure generally led to smaller
ISB, IVAR, and IMSE than Ferre and Yao’s.

In addition to the above global measures, we plot in Figure 1 the mean
function for each of the three β-estimates. The left panel of Figure 1 shows
the average of β̂(t)-functions (dashed line for complete, dotted line for sparse
data and dash-dot line for Ferré and Yao (2005)) when n = 100 along with
the true β(t) (solid line), the right panel provides the same plot for n =
200. Figure 1 indicates that the biases of our approach are comparable to
those of Ferré and Yao (2005) when data are observed completely. The bias
of our approach is significantly reduced for sparse data when the sample size
increases to 200, due to improved estimation of Γ and Γe.

2.2. Simulation II. The purpose of this simulation is to study the em-
pirical convergent rate of the estimated standardised e.d.r. η̂j(t). Thus, we
applied identical bandwidths in each run even when the sample sizes are
different to facilitate the comparison. All the simulation settings are iden-
tical to those in Simulation I, except for the number of observations per
curve. In this study, Ni’s are not randomly selected. Instead, Ni = 6 for
all i so the comparison can be more transparent. For each subject, we ran-
domly selected 6 observations from {t1, t2, . . . , t30} to generate the sparse
longitudinal data. This results in the longitudinal data (Xi1, . . . ,Xi6) for
the ith subject at time points (ti1, . . . , ti6). The simulation consists of 100
runs and Table 2 summarizes the numerical findings when n is 100, 200 and
400. Since the order of the bias is determined by the order of the bandwidth
and this is an analytical result from Taylor expansion, we focus on the rate
of the variance. The empirical convergent rates of the standardized e.d.r.
directions (ηk) can be checked through the IVAR results reported in Table
2. The ratios of the

√
IV AR for two consecutive samples in Table 2 are close
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to
√
2, which is the square root of the ratio of sample sizes. This provides

numerical evidence of the convergence rate.

3. Data Analysis. The data set we use here are the records of the
lifetimes and daily reproduction of female Medflies, quantified by the number
of eggs laid daily for 1000 female Mediterranean fruit flies. Details about the
experimental background can be found in Carey et al. (1998). Our goal is
to explore the relationship between early patterns of fecundity, quantified
by the number of eggs laid per day until day 20, and mortality for each
individual fly. For this reason, we exclude flies that died by day 30 and flies
that did not lay any eggs. The remaining 647 flies have an average lifetime
(Y ) of 43.9 days with a standard deviation of 11.9 days. It is assumed that
there is an underlying stochastic predicting process X(t) which quantifies
the reproduction pattern and can be characterized as a fecundity curve,
represented by the daily egg counts. The numbers of eggs laid in the first
20 days are discrete observations of the function X(t). The objective of
our analysis is to find the e.d.r. directions such that the projection of the
observations onto the resulting e.d.r. space will carry the key information
for longevity in the regression E(Y |X).

To test the efficiency of our method and to check the effect of sparse data,
we first use the complete information of all 20 days as complete/dense data;
and then randomly pick Ni points from each fly as our sparse data, where Ni

is uniformly distributed in {2, . . . , 10}. The approach in Ferré and Yao (2005)
was also applied to the complete data as a comparison. The results for the
functional inverse regression model and the associated direction estimates
are shown in Figures 2, 3 and 4. Figure 2 gives the plot of fraction of variance
explained by the eigenvalues of the standardized covariance functions for
E(X(t)|Y = y) for both sparse and complete data analysed by our approach.
We find that the eigenvalues decrease very fast and the fraction of variance
explained by the first eigenfunction is over 95% for sparse and 72% for
complete data. Further, the first two eigenfunctions explain over 90% of the
total variation for both sparse and complete data. Thus, one or at most
two directions would suffice to summarize the information contained in the
fecundity data in order to infer lifetime.

Figure 3 displays the directions estimated by our approach for both com-
plete and sparse data and by the method in Ferré and Yao (2005) for the
complete data only. The directions estimated by Ferré and Yao (2005) are
less smooth because Γ(s, t) was estimated empirically without smoothing.
However, the general trends of these directions are similar to ours except for
the first index after 15 days (t > 15). The global patterns of the direction
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estimates by our approach are similar between the two types of data and
the difference might be due to the difference in the selected bandwidths (a
larger bandwidth is used for sparse data to compensate for the sparsity, and
this leads to smoother directions.) The estimated β1(t) indicates that daily
reproduction during the period day 4 to day 10 plays an important role in
mortality, while the estimated β2(t) shows the effect of daily reproduction
from day 10 to day 20.

One caveat is that the i-th index, 〈βi,X〉, can not be estimated well by
conventional numerical integrations when covariates are observed sparsely.
A remedy is to impute the indices for each subject. Specifically, for the jth
index of subject i, we consider

E(〈βj(t),Xi(t)〉|Xi) =

∫

µ(t)βj(t)dt+
∑

k

E(Aik|Xi)

(∫

φk(t)βj(t)dt

)

.

If the principal scores (Aik) are normality distributed,

E(Aik|Xi) = λkφ
T
k (Ti)Σ

−1
Xi

{Xi − µ(Ti)},

where φTk (Ti) = (φk(Ti1), . . . , φk(TiNi)), ΣXi is the covariance of Xi and
µT (Ti) = (µ(Ti1), . . . , µ(TiNi)). When the normality assumption does not
hold the above expression is no longer the true conditional expectation but
is the best linear projection of the principal scores onto the linear space
spanned by Xi. Therefore, we propose to estimate the j-th index of subject
i by
(3.1)

Ê(〈βj(t),Xi(t)〉|Xi) =

∫

µ̂(t)β̂j(t)dt+
∑

k

Ê(Aik|Xi)

(
∫

φ̂k(t)β̂j(t)dt

)

,

where Ê(Aik|Xi) = λ̂kφ̂
T
k (Ti)Σ̂

−1
Xi

{Xi − µ̂(Ti)}.
Since two directions suffice to summarize the information contained in

the fecundity data to infer lifetime, we further explore the relation of life-
times with these two directions by assuming that the error ǫ in the model
is additive. The unknown bivariate regression function is estimated by a bi-
variate local linear smoother on the estimated bivariate indices. Specifically,
the estimated link surface based on the two indices at (u, v) is ŷ = b̂0(u, v),
where

(b̂0, b̂1, b̂2)
T = arg min

b=(b0,b1,b2)T

n
∑

i=1

{Yi − b0 − b1(u− Ui)− b2(v − Vi)}2

×K2(
Ui − u

hu
,
Vi − v

hv
),
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K2 is the bivariate kernel function with bandwidths hu and hv, and Ui =
〈β̂1(t),Xi(t)〉 and Vi = 〈β̂2(t),Xi(t)〉 are the two estimated indices of the i-
th subject. The estimated link surfaces are provided in Figure 4. The e.d.r.
directions of the upper panel were obtained by our approach (left) and Ferré
and Yao (2005)’s (right) from complete data, and those of the lower panel
were obtained by our approach from sparse data using two different ways
to calculate the index. The lower right plot uses the complete covariate
X(t) but the lower left plot uses the imputed X(t) through the conditional
expectation (3.1). The estimated e.d.r. directions are not identical so the
ranges of the resulted indices also vary with the imputed ones most different
from the rest. This is because of the shrinkage effect in the imputation,
which leads to the narrowest ranges among all four methods. Despite this
difference, the global pattern of all four methods are similar in the sense
that lifetimes tend to increase with increasing size of the first index when
the second index is held fixed. From the model fitting perspective, all four
methods are also comparable since the averages of the square fitted errors
shown in Table 3 differs little. Specifically, averages of the square fitted errors
are similar for all three methods where the indices were obtained by plugging
in the complete covariate X(t) and interestingly our approach for sparse data
performed slightly better than Ferré and Yao (2005)’s approach based on
complete data. Expectedly, the worse case is when both the e.d.r. directions
and indices are estimated from sparse data, but the average of square fitted
error is only slightly larger than the others. Overall, this supports the use
of the imputed X(t) based on (3.1).

Combining Figures 3 and 4, we find that a fly laying fewer eggs from day
4 to day 10 but making it up later by reaching average number of egg pro-
duction during the period day 10 to day 20 is expected to live longer. Since
egg production is most intense in the early stage (day 4 to 10), this suggests
a cost of early reproduction to female Medflies. One plausible explanation
is that young Medflies are still fragile and reproduction depletes the needed
nutrition for growth.

4. Proof of Lemma 2.2.

Proof of Lemma 2.2. We define

Γ̃e(s, t) =
1

n

n
∑

i=1

m(s, Yi)m(t, Yi)−
1

n

n
∑

i=1

m(s, Yi)
1

n

n
∑

i=1

m(t, Yi),

then Γ̂e − Γe = (Γ̂e − Γ̃e) + (Γ̃e − Γe).
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We first consider Γ̂e − Γ̃e:

Γ̂e − Γ̃e = { 1
n

n
∑

i=1

m̂(s, Yi)m̂(t, Yi)−
1

n

n
∑

i=1

m(s, Yi)m(t, Yi)}

− { 1
n

n
∑

i=1

m̂(s, Yi)
1

n

n
∑

i=1

m̂(t, Yi)−
1

n

n
∑

i=1

m(s, Yi)
1

n

n
∑

i=1

m(t, Yi)}

= I1 − I2,

where

I1 =
1

n

n
∑

i=1

m̂(s, Yi)m̂(t, Yi)−
1

n

n
∑

i=1

m(s, Yi)m(t, Yi),

I2 =
1

n

n
∑

i=1

m̂(s, Yi)
1

n

n
∑

i=1

m̂(t, Yi)−
1

n

n
∑

i=1

m(s, Yi)
1

n

n
∑

i=1

m(t, Yi).

Rewrite I1 as
I1 = S1 + S2 + S3,

where

S1 =
1

n

n
∑

i=1

(m̂(s, Yi)−m(s, Yi))(m̂(t, Yi)−m(t, Yi)),

S2 =
1

n

n
∑

i=1

m(s, Yi)(m̂(t, Yi)−m(t, Yi)),

S3 =
1

n

n
∑

i=1

(m̂(s, Yi)−m(s, Yi))m(t, Yi).

The L2 norm of S1 is

||S1|| =
[

∫ ∫

(
1

n

n
∑

i=1

(m̂(s, Yi)−m(s, Yi))(m̂(t, Yi)−m(t, Yi)))
2dsdt

]1/2

≤
[

∫ ∫

1

n2

n
∑

i=1

(m̂(s, Yi)−m(s, Yi))
2

n
∑

i=1

(m̂(t, Yi)−m(t, Yi))
2dsdt

]1/2

=
1

n

n
∑

i=1

||m̂(s, Yi)−m(s, Yi)||2.

Lemma 2.1 implies that

E(||m̂(s, y)−m(s, y)||2|Ti, Yi, i = 1, . . . , n) = Op(
1

nh2EN
+ h4).
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Equivalently, for any ε, there exists M > 0, such that

(4.1) P (
E(||en||2|Sn)

rn
≥M) < ε,

where en = m̂(s, y)−m(s, y), Sn = {Ti, Yi, i = 1, . . . , n} and rn = 1
nh2EN

+
h4.

Give K > 0 such that M
K ≤ ε, we have

E(||en||2|Sn) =

∫

||en||2dFen|Sn
(·|Sn)

≥
∫

{ ||en||2

rn
≥K}

||en||2dFen|Sn
(·|Sn)

≥ rnKP (
||en||2
rn

≥ K|Sn),(4.2)

where Fen|Sn
is the conditional cdf of en given Sn.

Divided both sides of equation (4.2) by rn, we obtain

E(||en||2|Sn)
rn

≥ KP (
||en||2
rn

≥ K|Sn),

which implies the relationship between two sets:

{E(||en||2|Sn)
rn

≥M} ⊃ {KP ( ||en||
2

rn
≥ K|Sn) ≥M},

thereby

(4.3) P (
E(||en||2|Sn)

rn
≥M) ≥ P (P (

||en||2
rn

≥ K|Sn) ≥
M

K
).

From equation (4.1) ∼ (4.3), we obtain

(4.4) P (P (
||en||2
rn

≥ K|Sn) ≥
M

K
) ≤ ε.

We next consider P ( ||en||
2

rn
≥ K). The simple calculation shows that

P (
||en||2
rn

≥ K) = E(P (
||en||2
rn

≥ K|Sn)).
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Therefore, we have

P (
||en||2
rn

≥ K) =

∫

P (
||en||2
rn

≥ K|Sn)dFSn

≤
∫

{P ( ||en||2

rn
≥K|Sn)≥M

K
}
1dFSn +

M

K

∫

dFSn

≤ P (P (
||en||2
rn

≥ K|Sn) ≥
M

K
) +

M

K

≤ 2ε,(4.5)

where FSn is the cdf of Sn, and the last inequality is from (4.4) and the
definition of positive number K . The inequality (4.5) directly implies that

(4.6) ||m̂(s, y)−m(s, y)||2 = Op(
1

nh2EN
+ h4).

Thus, from (4.6),

||S1|| = Op(
1

nh2EN
+ h4),

||S2|| = || 1
n

n
∑

i=1

m(s, Yi)(m̂(t, Yi)−m(t, Yi))||

≤

√

√

√

√

1

n

n
∑

i=1

||m(s, Yi)||2||S1||

= Op

(

√

1

nh2EN
+ h4

)

.

Similarly, ‖S3‖ = Op

(√

1
nh2EN

+ h4
)

.

Thus, I1 = Op(
√

1
nh2EN

+ h4). Following the same arguments, we can

show that I2 = Op(
√

1
nh2EN

+ h4), and thus Γ̂e − Γ̃e = Op(
√

1
nh2EN

+ h4).

Since Γ̃e − Γe = Op(
1√
n
) = op(

1√
nh2EN

), we have

Γ̂e − Γe = Op(

√

1

nh2EN
+ h4).
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Table 1

Simulation comparison of FY (Ferré and Yao (2005)) for complete data and our
procedures for both complete and sparse data. The comparison is based on the averages of

correlations, ISB, IVAR and IMSE in 100 simulation runs.

n Data type Correlation ISB IVAR IMSE

100
FY (Complete) 0.7159 0.0114 0.2008 0.2123

Complete 0.9912 0.0043 0.0084 0.0127
Sparse 0.8831 0.0583 0.2823 0.3406

200
FY (Complete) 0.8218 0.0024 0.0837 0.0861

Complete 0.9921 0.0024 0.0092 0.0116
Sparse 0.9438 0.0274 0.1602 0.1876
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Fig 1. Simulation comparison of the average estimates of β(t) for the three methods in
Table 1. The left panel shows the average of n estimate (β̂(t)) for various methods vs the
target (β(t)) for n=100, and the right panel for n= 200.

Table 2

The average of ‖η̂(t)− ¯̂η(t)‖ =
(∫

T
(η̂(t)− ¯̂η(t))2dt

)1/2
=

√
IV AR for sparse data and

ratios of the
√
IV AR for two consecutive samples is close to the theoretical rate

√
2.

n ‖η̂(t)− ¯̂η(t)‖
100 0.4375
200 0.3141
400 0.2138

Table 3

Average of the square fitted errors, 1

n

∑n
i=1

(yi − ŷi)
2, of the fecundity data, based on four

different methods: Ferré and Yao (2005), our method with complete data, and our
method with sparse data (using true X(t) to calculate the index and using imputed X(t)

to calculate the index.)

Method Complete: FY Complete Sparse: True X(t) Sparse: Imputed X(t)

Fitted Error 134.28 134.05 134.13 139.38
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Fig 2. The fractions of variance explained from the complete data and sparse data
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Fig 3. Estimated β1(t) and β2(t) from complete data and sparse data.
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Fig 4. Estimated link functions: the e.d.r. directions of the upper panel were obtained by
our approach (left) and Ferré and Yao (2005) (right) from complete data and those of
the lower panel were obtained by our approach from sparse data. The lower left shows the
surface when the indices were calculated with true complete covariate and the lower right
shows the surface when the indices were calculated with the imputed covariate (3.1).


