超表面实现复杂矢量涡旋光束的研究进展

柯岚,章思梦,李晨霞,等. 超表面实现复杂矢量涡旋光束的研究进展[J]. 光电工程,2023,50(8): 230117. doi: 10.12086/oee.2023.230117
引用本文: 柯岚,章思梦,李晨霞,等. 超表面实现复杂矢量涡旋光束的研究进展[J]. 光电工程,2023,50(8): 230117. doi: 10.12086/oee.2023.230117
Ke L, Zhang S M, Li C X, et al. Research progress on hybrid vector beam implementation by metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117
Citation: Ke L, Zhang S M, Li C X, et al. Research progress on hybrid vector beam implementation by metasurfaces[J]. Opto-Electron Eng, 2023, 50(8): 230117. doi: 10.12086/oee.2023.230117

超表面实现复杂矢量涡旋光束的研究进展

  • 基金项目:
    国家自然科学基金项目(62175224);浙江省自然科学基金重点项目(LZ21A040003);浙江省自然科学基金一般项目(LY22F050001)
详细信息
    作者简介:
    通讯作者: 井绪峰,jingxufeng@cjlu.edu.cn
  • 中图分类号: O436

Research progress on hybrid vector beam implementation by metasurfaces

  • Fund Project: Project supported by National Natural Science Foundation of China (62175224), and Natural Science Foundation of Zhejiang Province (LZ21A040003, LY22F050001)
More Information
  • 作为一种人工微纳器件,超表面能够对光束的传播和相位进行精确的调控。具有不同偏振矢量特性的涡旋光束具有独特的光场分布特性,利用超表面生成复杂状态的矢量涡旋光场具有越来越广泛的研究前景。本文针对产生矢量涡旋光束超表面的材料进行分类,介绍了金属超表面、全介质超表面和智能超表面在矢量涡旋光束生成和调控方面的研究进展。我们详细阐述了超表面利用不同相位理论对入射波前调制的原理和超表面生成的不同矢量涡旋光束的特性,并探讨了这两者之间的联系。此外,我们总结了利用超表面代替传统光学器件生成矢量涡旋光束的优势,并展望了未来利用不同材料的超表面进行矢量光场调控研究方面的挑战和可能性。

  • Overview: Metasurface refers to two-dimensional materials composed of micro or nano-scale structures. Due to the precise design of its microstructures, metasurfaces can be used to control light beam propagation and phase with high accuracy. Vector beams refer to light beams whose polarization state changes along the direction of propagation and thus require a vector field description. Unlike traditional beams, vector beams can interact with various degrees of freedom including spin angular momentum, orbital angular momentum, transverse, and radial, and exhibit more complex and diverse transmission characteristics. Therefore, the generation of complex vector vortex fields using metasurfaces has broad prospects in optical communication, computation, and processing. This article mainly categorizes metasurfaces for generating vector beams based on their materials, including metal metasurfaces, all-dielectric metasurfaces, and intelligent metasurfaces. We demonstrate the progress made in generating vector beams using different metasurfaces and their applications in various backgrounds. Meanwhile, we elaborate on the principles of how different metasurfaces modulate incident wavefronts using different phase theories and the characteristics of the generated vector beams. We explore the relationship between the two and provide important guidance and theoretical support for researchers. In addition, we summarize the advantages of using metasurfaces instead of traditional optical devices to generate vector beams. Compared to traditional devices, metasurfaces have smaller size, higher control precision, and more convenient preparation and regulation techniques. Finally, we also discuss the challenges and possibilities of using metasurfaces of different materials for vector field control in the future.

  • 加载中
  • 图 1  一种基于TiO2纳米柱的全介质超表面生成超手性高拓扑荷涡旋光束[65]。(a) 基于超表面转化的激光泵浦源及各部件示意图;(b) 超表面中心部位示意图与单元结构参数;(c)生成拓扑荷l1=10与l2=100涡旋光束超表面的光学显微镜照片;(d)旋转超表面实现不同拓扑荷光束生成与叠加电场强度示意图;(e)显示不同激光测量状态的广义OAM球

    Figure 1.  A dielectric metasurface based on TiO2 nanorods[65]. (a) Schematic diagram of laser pumping source and components based on metasurface conversion; (b) Schematic diagram of the central part and unit structural parameters of the metasurface; (c) Optical microscope images of the generated metasurfaces with topological charge l1=10 and l2=100; (d) Schematic diagram of generating and superimposing electric field intensities of beams with different topological charges by rotating the metasurface; (e) Generalized OAM spheres displaying different laser measurement states

    图 2  基于双晶体柱单元的全介质超表面生成具有不同偏振矢量特性的涡旋光束[61]。(a)传统矢量涡旋光束与完美涡旋矢量光束的庞加莱球表示, 包含不同球坐标理论强度分布与偏振态分布示意图。(b)双硅晶体柱单元结构示意图与斜入射实现入射波波前相位、振幅与偏振态调制示意图。(c) (θ, φ0)=(π/2, 0), lp=0时不同l0的理论强度分布, 偏振态分布以及实验测得的强度分布和偏振分布, 包含经过正交偏振片后的强度。(d) (θ, φ0)=(π/3, 2π/3), lp=0时不同l0的理论强度分布, 偏振态分布以及实验测得强度分布和偏振分布, 包含经过正交偏振片后的强度。(e) (θ, φ0)=(π/2, 0), l0= −2时不同lp的理论强度分布, 偏振态分布以及实验测得的强度分布和偏振分布, 包含经过正交偏振片后的强度。(f) (θ, φ0)=(π/3, 2π/3), l0=−3时不同lp的理论强度分布, 偏振态分布以及实验测得强度分布和偏振分布, 包含经过正交偏振片后的强度

    Figure 2.  Metasurfaces based on dual crystal pillar unit cell [61]. (a) Poincaré sphere representation of a conventional vector vortex beam and a perfect vortex vector beam, illustrating their different theoretical intensity and polarization distributions in spherical coordinates; (b) Schematic of the bilayer silicon pillar unit structure and the modulation of the incident wavefront phase, amplitude, and polarization state under oblique incidence; (c) Intensity and polarization distributions obtained from theory and experiment for different $ { {l}}_{ {0}} $ values at (θ, φ0)=(π/2, 0) with $ { {l}}_{ {{\rm{p}}}} {} {=} {} {0} $, including the intensity after passing through an orthogonal polarizer; (d) Intensity and polarization distributions obtained from theory and experiment for different $ { {l}}_{ {0}} $ values at (θ, φ0)=(π/3, 2π/3) with $ { {l}}_{ {{\rm{p}}}} {=0} $, including the intensity after passing through an orthogonal polarizer; (e) Intensity and polarization distributions obtained from theory and experiment for different ${ {l}}_{ {{\rm{p}}}}$ values at (θ, φ0)=(π/2, 0) with ${ {l}}_{ {{\rm{0}}}} {} {=} {} {-2}$, including the intensity after passing through an orthogonal polarizer; (f) Intensity and polarization distributions obtained from theory and experiment for different ${ {l}}_{ {{\rm{p}}}}$ values at (θ, φ0)=(π/3, 2π/3) with ${ {l}}_{ {{\rm{{\rm{0}}}}}} {} {=} {} {-3}$, including the intensity after passing through an orthogonal polarizer

    图 3  一种全介质自旋复用超表面实现多种完美庞加莱光束[86]。 (a)各种完美庞加莱光束的混合阶庞加莱球表示;(b)由布置在熔融二氧化硅基板上的TiO2矩形纳米柱构成的超表面示意图,包含单元的透视图与俯视图;(c)超表面相位叠加方法示意图;(d) 530 nm工作波长下y-z平面上光学涡旋强度分布于焦点处x-y平面光学涡旋环形强度分布图,比例尺10 μm,右侧为MF1与MF2环形强度分布归一化截面图;(e) 480 nm (蓝色)、580 nm (黄色)、630 nm (红色)波长下y-z平面光强归一化分布与焦点处光强归一化分布,比例尺10 μm

    Figure 3.  A kind of all-medium spin-multiplexing metasurfaces for various perfect Poincaré beams[86]. (a) Hybrid-order Poincaré sphere representation of various perfect Poincaré beams; (b) Schematic view of the metasurface composed of rectangular TiO2 nanorods arranged on a melted silica substrate, including perspective and top views of a unit cell; (c) Schematic diagram of the phase superposition method of the metasurface; (d) Intensity distribution of optical vortex in the y-z plane at the working wavelength of 530 nm, and the ring-shaped intensity distribution of optical vortex in the x-y plane at the focal point, with a scale of 10 μm. The right side is the normalized cross-sectional distribution of the ring-shaped intensity of MF1 and MF2; (e) Normalized light intensity distribution in the y-z plane at 480 nm (blue), 580 nm (yellow), and 630 nm (red) wavelengths, and the normalized light intensity distribution at the focal point, with a scale of 10 μm

    图 4  圆极化入射全介质超表面生成拓扑荷数空间纵向变化的涡旋光[89]。 (a)左旋圆极化光入射超表面时在纵向集成拓扑荷l = ±2的涡旋光束;(b)随着传播距离变化的空间场强分布截面与相位分布(x-y平面,左旋圆极化入射情况);(c)右旋圆极化光入射超表面时在纵向集成拓扑荷l = ±1的涡旋光束;(d) 随着传播距离变化的空间场强分布截面与相位分布(x-y平面,右旋圆极化入射情况)

    Figure 4.  Vortex beams with longitudinal variation in topological charges based on all-dielectric metasurfaces at the incidence of circular polarization[89]. (a) Vortex beams of longitudinal topological charge l = ±2 are generated when left-handed circularly polarized light is incident on the metasurface; (b) The spatial distribution of the field strength and phase changes with propagation distance in the x-y plane when left-handed circularly polarized light is incident; (c) Vortex beams of longitudinal topological charge l = ±1 are generated when right-handed circularly polarized light is incident on the metasurface; (d) The spatial distribution of the field strength and phase changes with the propagation distance in the x-y plane when right-handed circularly polarized light is incident

    图 5  线极化入射超表面生成矢量涡旋光[89]。 (a)入射光在z方向由角向偏振分布涡旋光束向径向偏振分布涡旋光束转化;(b)空间偏振分布,从角向分布到二阶径向分布;(c)空间偏振分布,从径向分布到二阶径向分布

    Figure 5.  Vector vortex beam generation at the incidence of linear polarization[89]. (a) The incident light polarized in the z-direction is converted from a vortex beam with angular polarization distribution to a vortex beam with radial polarization distribution; (b) Spatial polarization distribution changes from an angular distribution to a second-order radial distribution; (c) Spatial polarization distribution changes from a radial distribution to a second-order radial distribution

    图 6  金纳米孔阵列实现完美涡旋光[107]。(a)金纳米孔结构参数与示意图;(b)不同旋转角度对应的相位曲线分布;(c)相同波长下不同拓扑荷在不同纵向距离的光强对比;(d)实现完美涡旋光需要的相位叠加;(e)生成的完美涡旋光束光强纵向分布示意图;(f)同一焦平面实现四束完美涡旋光的相位分布于光强分布,上半部分焦距为4 μm,下半部分焦距为8 μm

    Figure 6.  Perfect vortex light generated by the gold nanopore array[107]. (a) Structural parameters and schematic diagram of the gold nanopore; (b) Phase curve distribution corresponding to different rotation angles; (c) Comparison of light intensity of different topological charges at different longitudinal distances under the same wavelength; (d) Phase superposition required to achieve perfect vortex light; (e) Schematic diagram of the longitudinal distribution of the generated perfect vortex light beam intensity; (f) The phase distribution and light intensity distribution of four perfect vortex lights realized on the same focal plane, with a focal length of 4 μm in the upper half and 8 μm in the lower half

    图 7  金属超表面实现圆柱矢量光束的多路复用与解复用[108]。 (a)不同光束入射金属超表面产生多衍射级不同拓扑荷涡旋光束;(b)入射光束与不同衍射阶光束的偏振态及光强分布示意图;(c)超表面在xy方向满足三个级次的相位分布;(d)不同入射角度产生的相位延迟;(e)利用两个超表面实现多路复用与解复用示意图,包含入射光束、多路复用光束与阶复用光束的偏振与光强分布图

    Figure 7.  Multiplexing and demultiplexing of cylindrical vector beams based on metal metasurfaces[108]. (a) Metal metasurfaces generating multilevel diffracted topological vortex beams for different incident beams; (b) Schematic diagram of the polarization state and intensity distribution of the incident beam and different diffracted order beams; (c) The metasurface satisfies three order phase distributions in the x and y directions; (d) Phase delay generated by different incident angles; (e) Schematic diagram of multiplexing and demultiplexing using two metasurfaces, including the polarization and intensity distribution of the incident beam, multiplexed beam, and order multiplexed beam

    图 8  一种金属超表面实现二次谐波涡旋光束[112]。 (a)金纳米孔阵列沉降WS2层对光束的转化原理示意图;(b)金纳米孔阵列,Au-WS2超表面以及单WS2的透射谱分析;(c)超表面相位与空间传输示意图;(d)不同拓扑荷光强与相位分布图

    Figure 8.  A metal metasurface achieving second harmonic vortex beams[112]. (a) Schematic illustration of the transformation principle of the gold nanohole array settling WS2 layer on the beam; (b) Transmittance spectra analysis of the gold nanohole array, Au-WS2 metasurface, and single WS2; (c) Metasurface phase and spatial transmission schematic; (d) Distribution of different topological charges, light intensity, and phase

    图 9  一种三层金属超表面实现多通道矢量全息[113]。(a)三层金属超表面单元结构示意图,每层金属结构之间以PI (聚酰亚胺)介质隔开;(b)超表面阵列区块偏振旋转角度分布示意图;(c)超表面实现多通道矢量全息效果示意图;(d)实验结果示意图,包含没有选择偏振态进行检测的全息图振幅分布与不同通道隐藏偏振态实验振幅分布

    Figure 9.  A three-layer metal metasurface realizing multi-channel vector holography [113]. (a) Schematic diagram of the three-layer metal metasurface unit structure, with PI (polyimide) medium separating each layer of metal structure; (b) Schematic diagram of the polarization rotation angle distribution of the metasurface array blocks; (c) Schematic diagram of the multi-channel vector holography effect achieved by the metasurface; (d) Schematic diagram of the experimental results, including the amplitude distribution of the hologram without selecting the polarization state for detection, and the amplitude distribution of the experiment with different channels hiding polarization states

    图 10  一种可编程控制散射超表面[128]。(a) FPGA控制超表面编码实现多功能转换;(b)超表面单元结构示意图与超表面实物图;(c)可编程超表面实现不同拓扑荷OAM光束切换,光强及相位分布示意图

    Figure 10.  A programmable controlled scattering metasurface[128]. (a) FPGA controls the meta-surface coding to achieve multi-functional transformations; (b) Schematic diagram and physical picture of the metasurface unit structure; (c) Programmable metasurface achieves different topological charges of OAM beam switching, and the schematic diagram of the intensity and phase distribution

    图 11  一种2-bit可编码超表面[127]。(a)超表面阵列实物与单元构成示意图;(b)利用超表面实现单模不同拓扑荷OAM光束,包含超表面相位分布与仿真结果;(c)改变编码实现单模OAM波束偏转不同角度光强示意图;(d)多模OAM光束的生成与集成,包含近场与远场光强分布示意图

    Figure 11.  A 2-bit encoded metasurface[127]. (a) Schematic diagram of the metasurface array and unit composition; (b) Using the metasurface to realize a single-mode OAM beam with different topological charges, including the metasurface phase distribution and simulation results; (c) Changing the code to achieve different angles of deflection for a single-mode OAM beam, as shown by the schematic diagram of the light intensity; (d) The generation and integration of multi-mode OAM beams, including the near-field and far-field light intensity distributions

    图 12  利用光敏二极管可调谐超表面实现不同功能[131]

    Figure 12.  Using a tunable metasurface with a photodetector to achieve various functions[131]

  • [1]

    Holloway C L, Kuester E F, Gordon J A, et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials[J]. IEEE Antennas Propag Mag, 2012, 54(2): 10−35. doi: 10.1109/MAP.2012.6230714

    [2]

    Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): e1232009. doi: 10.1126/science.1232009

    [3]

    Akyildiz I F, Jornet J M, Han C. Terahertz band: next frontier for wireless communications[J]. Phys Commun, 2014, 12: 16−32. doi: 10.1016/j.phycom.2014.01.006

    [4]

    Liu S, Cui T J, Zhang L, et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams[J]. Adv Sci, 2016, 3(10): 1600156. doi: 10.1002/advs.201600156

    [5]

    Li F Y, Tang T T, Li J, et al. Chiral coding metasurfaces with integrated vanadium dioxide for thermo-optic modulation of terahertz waves[J]. J Alloys Compd, 2020, 826: 154174. doi: 10.1016/j.jallcom.2020.154174

    [6]

    Zhang L, Wang Z X, Shao R W, et al. Dynamically realizing arbitrary multi-bit programmable phases using a 2-bit time-domain coding metasurface[J]. IEEE Trans Antennas Propag, 2020, 68(4): 2984−2992. doi: 10.1109/TAP.2019.2955219

    [7]

    Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Phys Rev Lett, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901

    [8]

    Shabanpour J. Full manipulation of the power intensity pattern in a large space-time digital metasurface: from arbitrary multibeam generation to harmonic beam steering scheme[J]. Ann Phys, 2020, 532(10): 2000321. doi: 10.1002/andp.202000321

    [9]

    Zhang X L, Deng R Y, Yang F, et al. Metasurface-based ultrathin beam splitter with variable split angle and power distribution[J]. ACS Photonics, 2018, 5(8): 2997−3002. doi: 10.1021/acsphotonics.8b00626

    [10]

    Gao X, Tang L G, Wu X B, et al. Broadband and high-efficiency ultrathin Pancharatnam-Berry metasurfaces for generating X-band orbital angular momentum beam[J]. J Phys D Appl Phys, 2021, 54(7): 075104. doi: 10.1088/1361-6463/abc5ea

    [11]

    Xu H X, Liu H W, Ling X H, et al. Broadband vortex beam generation using multimode Pancharatnam-Berry metasurface[J]. IEEE Trans Antennas Propag, 2017, 65(12): 7378−7382. doi: 10.1109/TAP.2017.2761548

    [12]

    Ding X M, Monticone F, Zhang K, et al. Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency[J]. Adv Mater, 2015, 27(7): 1195−1200. doi: 10.1002/adma.201405047

    [13]

    Kang M, Chen J, Wang X L, et al. Twisted vector field from an inhomogeneous and anisotropic metamaterial[J]. J Opt Soc Am B, 2012, 29(4): 572−576. doi: 10.1364/JOSAB.29.000572

    [14]

    Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Opt Lett, 2002, 27(13): 1141−1143. doi: 10.1364/OL.27.001141

    [15]

    Chen W T, Yang K Y, Wang C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Lett, 2014, 14(1): 225−230. doi: 10.1021/nl403811d

    [16]

    Sun S L, Yang K Y, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Lett, 2012, 12(12): 6223−6229. doi: 10.1021/nl3032668

    [17]

    Sun S L, He Q, Xiao S Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nat Mater, 2012, 11(5): 426−431. doi: 10.1038/nmat3292

    [18]

    Ndagano B, Nape I, Cox M A, et al. Creation and detection of vector vortex modes for classical and quantum communication[J]. J Lightwave Technol, 2018, 36(2): 292−301. doi: 10.1109/JLT.2017.2766760

    [19]

    Erhard M, Fickler R, Krenn M, et al. Twisted photons: new quantum perspectives in high dimensions[J]. Light Sci Appl, 2018, 7(3): 17146. doi: 10.1038/lsa.2017.146

    [20]

    Moreau P A, Toninelli E, Gregory T, et al. Ghost imaging using optical correlations[J]. Laser Photon Rev, 2018, 12(1): 1700143. doi: 10.1002/lpor.201700143

    [21]

    Nassiri M G, Brasselet E. Multispectral management of the photon orbital angular momentum[J]. Phys Rev Lett, 2018, 121(21): 213901. doi: 10.1103/PhysRevLett.121.213901

    [22]

    Endo K, Sekiya M, Kim J, et al. Resonant tunneling diode integrated with metalens for high-directivity terahertz waves[J]. Appl Phys Express, 2021, 14(8): 082001. doi: 10.35848/1882-0786/ac0678

    [23]

    Lu X Q, Zeng X Y, Lv H R, et al. Polarization controllable plasmonic focusing based on nanometer holes[J]. Nanotechnology, 2020, 31(13): 135201. doi: 10.1088/1361-6528/ab62d0

    [24]

    Qu S W, Wu W W, Chen B J, et al. Controlling dispersion characteristics of terahertz metasurface[J]. Sci Rep, 2015, 5: 9367. doi: 10.1038/srep09367

    [25]

    Taravati S, Eleftheriades G V. Pure and linear frequency-conversion temporal metasurface[J]. Phys Rev Appl, 2021, 15(6): 064011. doi: 10.1103/PHYSREVAPPLIED.15.064011

    [26]

    Li Z Y, Zhu Y B, Hao Y F, et al. Hybrid metasurface-based mid-infrared biosensor for simultaneous quantification and identification of monolayer protein[J]. ACS Photonics, 2019, 6(2): 501−509. doi: 10.1021/acsphotonics.8b01470

    [27]

    Rosales-Guzmán C, Ndagano B, Forbes A. A review of complex vector light fields and their applications[J]. J Opt, 2018, 20(12): 123001. doi: 10.1088/2040-8986/aaeb7d

    [28]

    Otte E, Alpmann C, Denz C. Polarization singularity explosions in tailored light fields[J]. Laser Photon Rev, 2018, 12(6): 1700200. doi: 10.1002/lpor.201700200

    [29]

    Wang X W, Nie Z Q, Liang Y, et al. Recent advances on optical vortex generation[J]. Nanophotonics, 2018, 7(9): 1533−1556. doi: 10.1515/nanoph-2018-0072

    [30]

    Forbes A. Structured light from lasers[J]. Laser Photon Rev, 2019, 13(11): 1900140. doi: 10.1002/lpor.201900140

    [31]

    Maguid E, Chriki R, Yannai M, et al. Topologically controlled intracavity laser modes based on Pancharatnam-Berry phase[J]. ACS Photonics, 2018, 5(5): 1817−1821. doi: 10.1021/acsphotonics.7b01525

    [32]

    Zambon N C, St-Jean P, Milićević M, et al. Optically controlling the emission chirality of microlasers[J]. Nat Photonics, 2019, 13(4): 283−288. doi: 10.1038/s41566-019-0380-z

    [33]

    Hayenga W E, Parto M, Ren J, et al. Direct generation of tunable orbital angular momentum beams in microring lasers with broadband exceptional points[J]. ACS Photonics, 2019, 6(8): 1895−1901. doi: 10.1021/acsphotonics.9b00779

    [34]

    Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Rep Prog Phys, 2016, 79(7): 076401. doi: 10.1088/0034-4885/79/7/076401

    [35]

    Luo W J, Xiao S Y, He Q, et al. Photonic spin hall effect with nearly 100% efficiency[J]. Adv Opt Mater, 2015, 3(8): 1102−1108. doi: 10.1002/adom.201500068

    [36]

    Zheng G X, Muhlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308−312. doi: 10.1038/nnano.2015.2

    [37]

    Sievenpiper D, Zhang L J, Broas R F J, et al. High-impedance electromagnetic surfaces with a forbidden frequency band[J]. IEEE Trans Microw Theory Tech, 1999, 47(11): 2059−2074. doi: 10.1109/22.798001

    [38]

    Sun S L, He Q, Hao J M, et al. Electromagnetic metasurfaces: physics and applications[J]. Adv Opt Photonics, 2019, 11(2): 380−479. doi: 10.1364/AOP.11.000380

    [39]

    Pu M B, Li X, Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Sci Adv, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396

    [40]

    Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nat Nanotechnol, 2015, 10(11): 937−943. doi: 10.1038/nnano.2015.186

    [41]

    Chen M Z, Mazilu M, Arita Y, et al. Dynamics of microparticles trapped in a perfect vortex beam[J]. Opt Lett, 2013, 38(22): 4919−4922. doi: 10.1364/OL.38.004919

    [42]

    Luo X G, Pu M B, Zhang F, et al. Vector optical field manipulation via structural functional materials: tutorial[J]. J Appl Phys, 2022, 131(18): 181101. doi: 10.1063/5.0089859

    [43]

    Zhang F, Pu M B, Guo Y H, et al. Synthetic vector optical fields with spatial and temporal tunability[J]. Sci China Phys Mech Astron, 2022, 65(5): 254211. doi: 10.1007/s11433-021-1851-0

    [44]

    Zhang F, Guo Y H, Pu M B, et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption[J]. Nat Commun, 2023, 14(1): 1946. doi: 10.1038/S41467-023-37510-Z

    [45]

    Bao Y J, Yu Y, Xu H F, et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control[J]. Light Sci Appl, 2019, 8: 95. doi: 10.1038/s41377-019-0206-2

    [46]

    Hsiao H H, Chu C H, Tsai D P. Fundamentals and applications of metasurfaces[J]. Small Methods, 2017, 1(4): 1600064. doi: 10.1002/smtd.201600064

    [47]

    Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190−1194. doi: 10.1126/science.aaf6644

    [48]

    Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nat Photonics, 2012, 6(7): 488−496. doi: 10.1038/nphoton.2012.138

    [49]

    Yue F Y, Wen D D, Xin J T, et al. Vector vortex beam generation with a single plasmonic metasurface[J]. ACS Photonics, 2016, 3(9): 1558−1563. doi: 10.1021/acsphotonics.6b00392

    [50]

    Yu Y F, Zhu A Y, Paniagua-Domínguez R, et al. High-transmission dielectric metasurface with 2π phase control at visible wavelengths[J]. Laser Photon Rev, 2015, 9(4): 412−418. doi: 10.1002/lpor.201500041

    [51]

    Evlyukhin A B, Novikov S M, Zywietz U, et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region[J]. Nano Lett, 2012, 12(7): 3749−3755. doi: 10.1021/nl301594s

    [52]

    Wang Z, Yao Y, Pan W K, et al. Bifunctional manipulation of terahertz waves with high-efficiency transmissive dielectric metasurfaces[J]. Adv Sci, 2023, 10(4): 2205499. doi: 10.1002/advs.202205499

    [53]

    Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896−901. doi: 10.1126/science.aao5392

    [54]

    Fan Z B, Qiu H Y, Zhang H L, et al. A broadband achromatic metalens array for integral imaging in the visible[J]. Light Sci Appl, 2019, 8: 67. doi: 10.1038/s41377-019-0178-2

    [55]

    Deng Z L, Jin M K, Ye X, et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J]. Adv Funct Mater, 2020, 30(21): 1910610. doi: 10.1002/adfm.201910610

    [56]

    Zhou Y, Zheng H Y, Kravchenko I I, et al. Flat optics for image differentiation[J]. Nat Photonics, 2020, 14(5): 316−323. doi: 10.1038/s41566-020-0591-3

    [57]

    Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V. Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator[J]. Opt Lett, 2013, 38(4): 534−536. doi: 10.1364/OL.38.000534

    [58]

    Koshelev K, Tang Y T, Li K F, et al. Nonlinear metasurfaces governed by bound states in the continuum[J]. ACS Photonics, 2019, 6(7): 1639−1644. doi: 10.1021/acsphotonics.9b00700

    [59]

    Fang X Y, Ren H R, Gu M. Orbital angular momentum holography for high-security encryption[J]. Nat Photonics, 2020, 14(2): 102−108. doi: 10.1038/s41566-019-0560-x

    [60]

    Yuan Y Y, Sun S, Chen Y, et al. A fully phase-modulated metasurface as an energy-controllable circular polarization router[J]. Adv Sci, 2020, 7(18): 2001437. doi: 10.1002/advs.202001437

    [61]

    Bao Y J, Ni J C, Qiu C W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams[J]. Adv Mater, 2020, 32(6): 1905659. doi: 10.1002/adma.201905659

    [62]

    Zheng C L, Li J, Yue Z, et al. All-dielectric trifunctional metasurface capable of independent amplitude and phase modulation[J]. Laser Photon Rev, 2022, 16(7): 2200051. doi: 10.1002/LPOR.202200051

    [63]

    李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electron Eng, 2017, 44(3): 255−275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    [64]

    Zhang F, Pu M B, Li X, et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions[J]. Adv Funct Mater, 2017, 27(47): 1704295. doi: 10.1002/adfm.201704295

    [65]

    Sroor H, Huang Y W, Sephton B, et al. High-purity orbital angular momentum states from a visible metasurface laser[J]. Nat Photonics, 2020, 14(8): 498−503. doi: 10.1038/s41566-020-0623-z

    [66]

    Li J T, Wang G C, Yue Z, et al. Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization[J]. Opto-Electron Adv, 2022, 5(1): 210062. doi: 10.29026/oea.2022.210062

    [67]

    Davis J A, Moreno I, Badham K, et al. Nondiffracting vector beams where the charge and the polarization state vary with propagation distance[J]. Opt Lett, 2016, 41(10): 2270−2273. doi: 10.1364/OL.41.002270

    [68]

    Tittl A, Leitis A, Liu M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105−1109. doi: 10.1126/science.aas9768

    [69]

    Genevet P, Capasso F, Aieta F, et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1): 139−152. doi: 10.1364/OPTICA.4.000139

    [70]

    Shen Y J, Wang X J, Xie Z W, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light Sci Appl, 2019, 8: 90. doi: 10.1038/s41377-019-0194-2

    [71]

    Xie X, Pu M B, Jin J J, et al. Generalized Pancharatnam-Berry phase in rotationally symmetric meta-atoms[J]. Phys Rev Lett, 2021, 126(18): 183902. doi: 10.1103/PHYSREVLETT.126.183902

    [72]

    Karimi E, Schulz S A, De Leon I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light Sci Appl, 2014, 3(5): e167. doi: 10.1038/lsa.2014.48

    [73]

    Chen W T, Khorasaninejad M, Zhu A Y, et al. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces[J]. Light Sci Appl, 2017, 6(5): e16259. doi: 10.1038/lsa.2016.259

    [74]

    Maguid E, Yulevich I, Veksler D, et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 2016, 352(6290): 1202−1206. doi: 10.1126/science.aaf3417

    [75]

    Fickler R, Lapkiewicz R, Plick W N, et al. Quantum entanglement of high angular momenta[J]. Science, 2012, 338(6107): 640−643. doi: 10.1126/science.1227193

    [76]

    Gregg P, Kristensen P, Ramachandran S. Conservation of orbital angular momentum in air-core optical fibers[J]. Optica, 2015, 2(3): 267−270. doi: 10.1364/OPTICA.2.000267

    [77]

    Huang L L, Chen X Z, Mühlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Lett, 2012, 12(11): 5750−5755. doi: 10.1021/nl303031j

    [78]

    Yu S X, Li L, Shi G M, et al. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain[J]. Appl Phys Lett, 2016, 108(24): 241901. doi: 10.1063/1.4953786

    [79]

    Huang L L, Chen X Z, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nat Commun, 2013, 4: 2808. doi: 10.1038/ncomms3808

    [80]

    Huang H, Xie G D, Yan Y, et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength[J]. Opt Lett, 2014, 39(2): 197−200. doi: 10.1364/OL.39.000197

    [81]

    Milione G, Lavery M P J, Huang H, et al. 4 x 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer[J]. Opt Lett, 2015, 40(9): 1980−1983. doi: 10.1364/OL.40.001980

    [82]

    Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators[J]. Adv Opt Photonics, 2016, 8(2): 200−227. doi: 10.1364/AOP.8.000200

    [83]

    Deng L G, Deng J, Guan Z Q, et al. Malus-metasurface-assisted polarization multiplexing[J]. Light Sci Appl, 2020, 9: 101. doi: 10.1038/s41377-020-0327-7

    [84]

    Lei T, Zhang M, Li Y R, et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings[J]. Light Sci Appl, 2015, 4(3): e257. doi: 10.1038/lsa.2015.30

    [85]

    Sain B, Meier C, Zentgraf T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review[J]. Adv Photonics, 2019, 1(2): 024002. doi: 10.1117/1.AP.1.2.024002

    [86]

    Liu M Z, Huo P C, Zhu W Q, et al. Broadband generation of perfect poincaré beams via dielectric spin-multiplexed metasurface[J]. Nat Commun, 2021, 12(1): 2230. doi: 10.1038/S41467-021-22462-Z

    [87]

    Dorrah A H, Rubin N A, Tamagnone M, et al. Structuring total angular momentum of light along the propagation direction with polarization-controlled meta-optics[J]. Nat Commun, 2021, 12(1): 6249. doi: 10.1038/s41467-021-26253-4

    [88]

    Dorrah A H, Rubin N A, Zaidi A, et al. Metasurface optics for on-demand polarization transformations along the optical path[J]. Nat Photonics, 2021, 15(4): 287−296. doi: 10.1038/s41566-020-00750-2

    [89]

    Zheng C L, Li J, Liu J Y, et al. Creating longitudinally varying vector vortex beams with an all-dielectric metasurface[J]. Laser Photon Rev, 2022, 16(10): 2200236. doi: 10.1002/LPOR.202200236

    [90]

    Guo Y H, Zhang S C, Pu M B, et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation[J]. Light Sci Appl, 2021, 10(1): 63. doi: 10.1038/S41377-021-00497-7

    [91]

    Wang D Y, Liu T, Zhou Y J, et al. High-efficiency metadevices for bifunctional generations of vectorial optical fields[J]. Nanophotonics, 2021, 10(1): 685−695. doi: 10.1515/NANOPH-2020-0465

    [92]

    Wang D Y, Liu F F, Liu T, et al. Efficient generation of complex vectorial optical fields with metasurfaces[J]. Light Sci Appl, 2021, 10(1): 67. doi: 10.1038/S41377-021-00504-X

    [93]

    Pfeiffer C, Grbic A. Controlling vector Bessel beams with metasurfaces[J]. Phys Rev Appl, 2014, 2(4): 044012. doi: 10.1103/PhysRevApplied.2.044012

    [94]

    王鹏飞, 贺风艳, 刘建军, 等. 基于连续谱束缚态的高Q太赫兹全介质超表面[J]. 激光技术, 2022, 46(5): 630−635. doi: 10.7510/jgjs.issn.1001-3806.2022.05.008

    Wang P F, He F Y, Liu J J, et al. High-Q terahertz all-dielectric metasurface based on bound states in the continuum[J]. Laser Technol, 2022, 46(5): 630−635. doi: 10.7510/jgjs.issn.1001-3806.2022.05.008

    [95]

    Parigi V, D'Ambrosio V, Arnold C, et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory[J]. Nat Commun, 2015, 6: 7706. doi: 10.1038/ncomms8706

    [96]

    Luo L W, Ophir N, Chen C P, et al. WDM-compatible mode-division multiplexing on a silicon chip[J]. Nat Commun, 2014, 5: 3069. doi: 10.1038/ncomms4069

    [97]

    Hu G W, Hong X M, Wang K, et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au-WS2 metasurface[J]. Nat Photonics, 2019, 13(7): 467−472. doi: 10.1038/s41566-019-0399-1

    [98]

    D'Ambrosio V, Nagali E, Walborn S P, et al. Complete experimental toolbox for alignment-free quantum communication[J]. Nat Commun, 2012, 3: 961. doi: 10.1038/ncomms1951

    [99]

    Chow P K, Jacobs-Gedrim R B, Gao J, et al. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides[J]. ACS Nano, 2015, 9(2): 1520−1527. doi: 10.1021/nn5073495

    [100]

    Yue Z, Li J T, Li J, et al. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion[J]. Opto-Electron Sci, 2022, 1(3): 210014. doi: 10.29026/oes.2022.210014

    [101]

    Zhang Y X, Pu M B, Jin J J, et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization[J]. Opto-Electron Adv, 2022, 5(11): 220058. doi: 10.29026/oea.2022.220058

    [102]

    Li G X, Chen S M, Pholchai N, et al. Continuous control of the nonlinearity phase for harmonic generations[J]. Nat Mater, 2015, 14(6): 607−612. doi: 10.1038/nmat4267

    [103]

    Genevet P, Lin J, Kats M A, et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes[J]. Nat Commun, 2012, 3: 1278. doi: 10.1038/ncomms2293

    [104]

    Janisch C, Wang Y X, Ma D, et al. Extraordinary second harmonic generation in tungsten disulfide monolayers[J]. Sci Rep, 2014, 4: 5530. doi: 10.1038/srep05530

    [105]

    Qin F, Ding L, Zhang L, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. Sci Adv, 2016, 2(1): e1501168. doi: 10.1126/sciadv.1501168

    [106]

    Hu G W, Ou Q D, Si G Y, et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers[J]. Nature, 2020, 582(7811): 209−213. doi: 10.1038/s41586-020-2359-9

    [107]

    Zhang Y C, Liu W W, Gao J, et al. Generating focused 3D perfect vortex beams by plasmonic metasurfaces[J]. Adv Opt Mater, 2018, 6(4): 1701228. doi: 10.1002/adom.201701228

    [108]

    Chen S Q, Xie Z Q, Ye H P, et al. Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control[J]. Light Sci Appl, 2021, 10(1): 222. doi: 10.1038/S41377-021-00667-7

    [109]

    夏小兰, 曾宪智, 宋世超, 等. 基于柱矢量光调控的纵向超分辨率准球形多焦点阵列[J]. 光电工程, 2022, 49(11): 220109. doi: 10.12086/oee.2022.220109

    Xia X L, Zeng X Z, Song S C, et al. Longitudinal super-resolution spherical multi-focus array based on column vector light modulation[J]. Opto-Electron Eng, 2022, 49(11): 220109. doi: 10.12086/oee.2022.220109

    [110]

    Lu Y D, Xu Y, Ouyang X, et al. Cylindrical vector beams reveal radiationless anapole condition in a resonant state[J]. Opto-Electron Adv, 2022, 5(4): 210014. doi: 10.29026/oea.2022.210014

    [111]

    Genevet P, Yu N F, Aieta F, et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities[J]. Appl Phys Lett, 2012, 100(1): 013101. doi: 10.1063/1.3673334

    [112]

    Zhao W C, Wang K, Hong X M, et al. Large second-harmonic vortex beam generation with quasi-nonlinear spin-orbit interaction[J]. Sci Bull, 2021, 66(5): 449−456. doi: 10.1016/j.scib.2020.08.043

    [113]

    Zhao H, Wang X K, Liu S T, et al. Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band[J]. Opto-Electron Adv, 2023, 6(2): 220012. doi: 10.29026/oea.2023.220012

    [114]

    He Q, Sun S L, Zhou L. Tunable/reconfigurable metasurfaces: physics and applications[J]. Research, 2019, 2019: 1849272. doi: 10.34133/2019/1849272

    [115]

    Wang Q, Rogers E T F, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nat Photonics, 2016, 10(1): 60−65. doi: 10.1038/nphoton.2015.247

    [116]

    Mou N L, Liu X L, Wei T, et al. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material[J]. Nanoscale, 2020, 12(9): 5374−5379. doi: 10.1039/C9NR07602F

    [117]

    Mehmood M Q, Mei S T, Hussain S, et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Adv Mater, 2016, 28(13): 2533−2539. doi: 10.1002/adma.201504532

    [118]

    Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light Sci Appl, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99

    [119]

    Liu S, Noor A, Du L L, et al. Anomalous refraction and nondiffractive bessel-beam generation of terahertz waves through transmission-type coding metasurfaces[J]. ACS Photonics, 2016, 3(10): 1968−1977. doi: 10.1021/acsphotonics.6b00515

    [120]

    Deng Z L, Deng J H, Zhuang X, et al. Diatomic metasurface for vectorial holography[J]. Nano Lett, 2018, 18(5): 2885−2892. doi: 10.1021/acs.nanolett.8b00047

    [121]

    Wen D D, Yue F Y, Li G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nat Commun, 2015, 6: 8241. doi: 10.1038/ncomms9241

    [122]

    Yan C, Li X, Pu M B, et al. Generation of polarization-sensitive modulated optical vortices with all-dielectric metasurfaces[J]. ACS Photonics, 2019, 6(3): 628−633. doi: 10.1021/acsphotonics.8b01119

    [123]

    Pfeiffer C, Grbic A. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets[J]. Phys Rev Lett, 2013, 110(19): 197401. doi: 10.1103/PhysRevLett.110.197401

    [124]

    Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333−337. doi: 10.1126/science.1210713

    [125]

    Wang D C, Zhang L C, Gu Y H, et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface[J]. Sci Rep, 2015, 5: 15020. doi: 10.1038/srep15020

    [126]

    Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304−1307. doi: 10.1126/science.1235399

    [127]

    Shuang Y, Zhao H T, Ji W, et al. Programmable high-order OAM-carrying beams for direct-modulation wireless communications[J]. IEEE J Emerging Sel Top Circuits Syst, 2020, 10(1): 29−37. doi: 10.1109/JETCAS.2020.2973391

    [128]

    Li S J, Li Y B, Zhang L, et al. Programmable controls to scattering properties of a radiation array[J]. Laser Photon Rev, 2021, 15(2): 2000449. doi: 10.1002/lpor.202000449

    [129]

    Liu G Y, Li L, Han J Q, et al. Frequency-domain and spatial-domain reconfigurable metasurface[J]. ACS Appl Mater Interfaces, 2020, 12(20): 23554−23564. doi: 10.1021/acsami.0c02467

    [130]

    Liu B Y, Du J C, Jiang X N, et al. All-in-one integrated multifunctional broadband metasurface for analogue signal processing, polarization conversion, beam manipulation, and near-field sensing[J]. Adv Opt Mater, 2022, 10(20): 2201217. doi: 10.1002/ADOM.202201217

    [131]

    Zhang X G, Jiang W X, Jiang H L, et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nat Electron, 2020, 3(3): 165−171. doi: 10.1038/s41928-020-0380-5

    [132]

    Chen D B, Yang J B, He X, et al. Tunable polarization-preserving vortex beam generator based on diagonal cross-shaped graphene structures at terahertz frequency[J]. Adv Opt Mater, 2023, 11(14): 2300182. doi: 10.1002/adom.202300182

  • 加载中

(13)

计量
  • 文章访问数:  3759
  • PDF下载数:  993
  • 施引文献:  0
出版历程
收稿日期:  2023-05-19
修回日期:  2023-09-01
录用日期:  2023-09-04
刊出日期:  2023-09-27

目录

/

返回文章
返回