快反镜系统滑模复合分层干扰观测补偿控制

罗勇,刘凯凯,杨帆,等. 快反镜系统滑模复合分层干扰观测补偿控制[J]. 光电工程,2023,50(4): 220330. doi: 10.12086/oee.2023.220330
引用本文: 罗勇,刘凯凯,杨帆,等. 快反镜系统滑模复合分层干扰观测补偿控制[J]. 光电工程,2023,50(4): 220330. doi: 10.12086/oee.2023.220330
Luo Y, Liu K K, Yang F, et al. Observation and compensation control of sliding mode compound layered interference for the fast steering mirror system[J]. Opto-Electron Eng, 2023, 50(4): 220330. doi: 10.12086/oee.2023.220330
Citation: Luo Y, Liu K K, Yang F, et al. Observation and compensation control of sliding mode compound layered interference for the fast steering mirror system[J]. Opto-Electron Eng, 2023, 50(4): 220330. doi: 10.12086/oee.2023.220330

快反镜系统滑模复合分层干扰观测补偿控制

  • 基金项目:
    四川省自然科学基金资助项目(2023NSFSC1438)
详细信息
    作者简介:
    通讯作者: 李涛,litaojia@nuist.edu.cn
  • 中图分类号: TH-39;TP273

Observation and compensation control of sliding mode compound layered interference for the fast steering mirror system

  • Fund Project: Natural Science Foundation of Sichuan Province (2023NSFSC1438)
More Information
  • 音圈电机驱动快反镜是高精度光电跟踪系统中的重要组成部分。在运动平台光电跟踪系统中,快反镜系统所受各种内外干扰将更加复杂剧烈,传统的被动干扰抑制方法以及把干扰当作集总干扰处理的主动干扰抑制方法将不足以保证高精度的视轴稳定。因此本文提出一种谐波干扰观测与扩张状态观测结合的滑模复合分层干扰观测补偿控制策略。首先利用谐波干扰观测器对具备先验频率信息的谐波干扰进行观测,然后采用扩张状态观测器对其他未知干扰进行观测,最后基于观测的多源干扰,采用具有抗干扰能力的滑模非线性方法设计复合控制器,最大程度地对系统所受多源干扰进行抑制。实验表明,本文提出的滑模复合分层干扰观测补偿方法与传统的单一干扰观测补偿方法相比,能显著提升快反镜的视轴稳定精度。

  • 加载中
  • 图 1  快反镜系统构成

    Figure 1.  Composition of the fast steering mirror system

    图 2  复合分层干扰观测器控制结构

    Figure 2.  Composite layered disturbance observer control

    图 3  实验装置

    Figure 3.  Experimental devices

    图 4  多源干扰d(t)观测

    Figure 4.  Multi-source interference d(t) observation

    图 5  多源干扰d(t)观测误差对比

    Figure 5.  Multi-source perturbation d(t) observation error comparison

    图 6  不同控制策略下系统干扰抑制残差对比

    Figure 6.  Comparison of system interference suppression residuals under different control strategies

    表 1  电涡流传感器参数

    Table 1.  Eddy current sensor parameters

    品牌上海泽赞自动化科技有限公司
    型号SE990
    探头直径5 mm
    线性量程2 mm
    非线性误差≤±1%
    下载: 导出CSV

    表 2  CCD参数

    Table 2.  CCD parameters

    品牌Pulnix
    型号TMC-6740CL
    像素640*480
    像素大小7.4 μm
    下载: 导出CSV
  • [1]

    胡立发, 刘超, 申文, 等. 自适应光学技术在天文观测中的研究进展[J]. 中国科学:物理学 力学 天文学, 2017, 47(8): 084202. doi: 10.1360/SSPMA2016-00425

    Hu L F, Liu C, Shen W, et al. Advancement of adaptive optics in astronomical observation[J]. Sci Sin Phys, Mech Astron, 2017, 47(8): 084202. doi: 10.1360/SSPMA2016-00425

    [2]

    贾文武, 刘培正, 唐自力, 等. 靶场适用的光电经纬仪光轴平行性检测[J]. 光学 精密工程, 2020, 28(8): 1670−1677. doi: 10.3788/OPE.20202808.1670

    Jia W W, Liu P Z, Tang Z L, et al. Detection method for optical-axis parallelism of photoelectric theodolite in range[J]. Opt Precis Eng, 2020, 28(8): 1670−1677. doi: 10.3788/OPE.20202808.1670

    [3]

    李志俊, 毛耀, 亓波, 等. 量子光通信中位置修正单检测控制方法[J]. 光电工程, 2022, 49(3): 210311. doi: 10.12086/oee.2022.210311

    Li Z J, Mao Y, Qi B, et al. Research on control technology of single detection based on position correction in quantum optical communication[J]. Opto-Electron Eng, 2022, 49(3): 210311. doi: 10.12086/oee.2022.210311

    [4]

    唐涛, 马佳光, 陈洪斌, 等. 光电跟踪系统中精密控制技术研究进展[J]. 光电工程, 2020, 47(10): 200315. doi: 10.12086/oee.2020.200315

    Tang T, Ma J G, Chen H B, et al. A review on precision control methodologies for optical-electric tracking control system[J]. Opto-Electron Eng, 2020, 47(10): 200315. doi: 10.12086/oee.2020.200315

    [5]

    张良总, 杨涛, 吴云, 等. 基于图像测量的Stewart平台双阶控制技术[J]. 光电工程, 2022, 49(8): 220019. doi: 10.12086/oee.2022.220019

    Zhang L Z, Yang T, Wu Y, et al. Image measurement-based two-stage control of Stewart platform[J]. Opto-Electron Eng, 2022, 49(8): 220019. doi: 10.12086/oee.2022.220019

    [6]

    刘力双, 夏润秋, 吕勇, 等. 音圈电机快速控制反射镜研究现状[J]. 激光杂志, 2020, 41(9): 1−7. doi: 10.14016/j.cnki.jgzz.2020.09.001

    Liu L S, Xia R Q, Lv Y, et al. Research situation of fast steering mirror driven by voice coil motor[J]. Laser J, 2020, 41(9): 1−7. doi: 10.14016/j.cnki.jgzz.2020.09.001

    [7]

    赵磊, 纪明, 赵振海, 等. 舰载激光武器稳定平台粗精复合控制[J]. 激光与红外, 2019, 49(1): 86−92. doi: 10.3969/j.issn.1001-5078.2019.01.015

    Zhao L, Ji M, Zhao Z H, et al. Primary-precise compounded control for stabilized platform in shipborne laser weapon[J]. Laser Infrared, 2019, 49(1): 86−92. doi: 10.3969/j.issn.1001-5078.2019.01.015

    [8]

    侯艳芳, 叶泽田, 杨勇. 基于POS数据的车载面阵CCD影像与激光点云融合处理研究[J]. 遥感信息, 2011(4): 76−79. doi: 10.3969/j.issn.1000-3177.2011.04.015

    Hou Y F, Ye Z T, Yang Y. Research on integrated processing of vehicle-borne array CCD images and laser point cloud based on POS data[J]. Remote Sens Inf, 2011(4): 76−79. doi: 10.3969/j.issn.1000-3177.2011.04.015

    [9]

    朱广颂. 面向星载光通信应用的高精度瞄准技术研究[D]. 武汉: 华中科技大学, 2020.

    Zhu G S. Research on high precision pointing technology for spaceborne optical communication applications[D]. Wuhan: Huazhong University of Science & Technology, 2020.

    [10]

    高卓, 江泽, 邓麟. 机载光电吊舱目标定位技术研究[J]. 导航定位学报, 2013, 1(4): 74−78. doi: 10.3969/j.issn.2095-4999.2013.04.017

    Gao Z, Jiang Z, Deng L. Research on airborne optoelectronic pod target location method[J]. J Navig Positioning, 2013, 1(4): 74−78. doi: 10.3969/j.issn.2095-4999.2013.04.017

    [11]

    杜言鲁, 丁亚林, 许永森, 等. 机载光电平台隔振系统振动耦合分析[J]. 中国机械工程, 2015, 26(21): 2880−2884. doi: 10.3969/j.issn.1004-132X.2015.21.007

    Du Y L, Ding Y L, Xu Y S, et al. Analysis of coupled vibration in isolation system for airborne optoelectronic pod[J]. China Mech Eng, 2015, 26(21): 2880−2884. doi: 10.3969/j.issn.1004-132X.2015.21.007

    [12]

    Tian J, Yang W S, Peng Z M, et al. Inertial sensor-based multiloop control of fast steering mirror for line of sight stabilization[J]. Opt Eng, 2016, 55(11): 111602. doi: 10.1117/1.OE.55.11.111602

    [13]

    Zhou X, Mao Y, Zhang C, et al. A comprehensive performance improvement control method by fractional order control[J]. IEEE Photonics J, 2018, 10(5): 7906811. doi: 10.1109/jphot.2018.2865032

    [14]

    Ohishi K, Nakao M, Ohnishi K, et al. Microprocessor-controlled DC motor for load-insensitive position servo system[J]. IEEE Trans Ind Electron, 1987, IE-34(1): 44−49. doi: 10.1109/TIE.1987.350923

    [15]

    Han J Q. From PID to active disturbance rejection control[J]. IEEE Trans Ind Electron, 2009, 56(3): 900−906. doi: 10.1109/TIE.2008.2011621

    [16]

    Deng C, Yao M, Ren G, et al. MEMS inertial sensors-based multi-loop control enhanced by disturbance observation and compensation for fast steering mirror system[J]. Sensors, 2016, 16(11): 1920. doi: 10.3390/s16111920

    [17]

    Luo Y, Huang Y M, Deng C, et al. Combining a disturbance observer with triple-loop control based on MEMS accelerometers for line-of-sight stabilization[J]. Sensors, 2017, 17(11): 2648. doi: 10.3390/s17112648

    [18]

    Deng J Q, Zhou X, Mao Y. On vibration rejection of nonminimum-phase long-distance laser pointing system with compensatory disturbance observer[J]. Mechatronics, 2021, 74: 102490. doi: 10.1016/j.mechatronics.2021.102490

    [19]

    Nie K, Ren W, Zhou X, et al. Virtual dual-loop feedback control with model-construction linear extended state observer for free space optical communication[J]. Sensors, 2019, 19(18): 3846. doi: 10.3390/s19183846

    [20]

    Sui S S, Zhao T. Active disturbance rejection control for optoelectronic stabilized platform based on adaptive fuzzy sliding mode control[J]. ISA Trans, 2022, 125: 85−98. doi: 10.1016/j.isatra.2021.06.020

    [21]

    Qiao Q, Nie K, Deng J Q, et al. Sliding mode control of the optoelectronic stabilized platform based on the exponential approach law[C]//Proceedings of the 34th Youth Academic Annual Conference of Chinese Association of Automation, Jinzhou, 2019: 407–410. https://doi.org/10.1109/YAC.2019.8787674.

    [22]

    侯林林, 宗广灯. 具有多干扰的非线性时变时滞关联系统的复合分层抗干扰控制[J]. 系统科学与数学, 2014, 34(12): 1595−1603. doi: 10.12341/jssms12494

    Hou L L, Zong G D. Composite hierarchical anti-disturbance control for nonlinear time-varying delay interconnected systems with multiple disturbances[J]. J Syst Sci Math Sci, 2014, 34(12): 1595−1603. doi: 10.12341/jssms12494

    [23]

    Gao Z Q. Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the 2003 American Control Conference, Denver, 2003: 4989–4996. https://doi.org/10.1109/ACC.2003.1242516.

  • 加载中

(6)

(2)

计量
  • 文章访问数:  2331
  • PDF下载数:  822
  • 施引文献:  0
出版历程
收稿日期:  2022-12-06
修回日期:  2023-03-10
录用日期:  2023-03-14
刊出日期:  2023-04-25

目录

/

返回文章
返回