Skip to main content
Log in

Preparation of Tetrandrine Nanocrystals by Microfluidic Method and Its In Vitro and In Vivo Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The anti-hepatocellular carcinoma effects of TET are acknowledged, but its application is hindered by its poor water solubility and low bioavailability. Conventional methods for nanocrystal preparation are laborious and lack control. To address these limitations, we propose employing the microfluidic method in the preparation of TET nanocrystals, aiming to enhance the aforementioned constraints. The objectives of this study were to prepare TET nanocrystals (TET-NC@GL) using a Y-microfluidic method with glycyrrhetinic acid (GL) as a stabilizer. The optimal preparation prescription was determined through a single-factor test and Box-Behnken response surface method. Additionally, the nanocrystals prepared with the commonly used stabilizer polyvinylpyrrolidone K30 (PVPK30), known as TET-NC@PVPK30, were characterized and evaluated for their toxicity to HepG2 cells. Hybridized nanocrystals (TET-HNC@GL and TET-HNC@PVPK30) were synthesized using a water-soluble aggregation-induced emission (AIE) fluorescent probe (TVP). Qualitative and quantitative cellular uptake experiments were conducted using these hybridized nanocrystals. Conducting in vivo pharmacokinetic assays evaluates the relative bioavailability of nanocrystals. The results indicated that TET-NC@GL, optimized using the response surface method, had a particle size of 136.47 ± 3.31 nm and a PDI of 0.219 ± 0.002. The administration of TET-NC@GL significantly enhanced the cell inhibition rate compared to the TET group and the TET-NC@PVPK30 group (P < 0.01). Moreover, the qualitative and quantitative cellular uptake results revealed a significant enhancement in cellular uptake in the TET-HNC@GL administration group compared to the TET-HNC@PVPK30 group (P < 0.01). In vivo pharmacokinetic results showed that the bioavailability of TET-NC@GL group was 3.5 times higher than that of the TET group. The results demonstrate the successful preparation of TET-NC@GL nanocrystals.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Shen W, Ge S, Liu X, Yu Q, Jiang X, Wu Q, Tian Y, Gao Y, Liu Y, Wu C. Folate-functionalized SMMC-7721 liver cancer cell membrane-cloaked paclitaxel nanocrystals for targeted chemotherapy of hepatoma. Drug Deliv. 2022;29(1):31–42.

    Article  CAS  PubMed  Google Scholar 

  2. Jain AK, Sahu H, Mishra K, Thareja S. Mannose conjugated starch nanoparticles for preferential targeting of liver cancer. Curr Drug Deliv. 2021;18(3):369–80.

    Article  CAS  PubMed  Google Scholar 

  3. Wu L, Shi Y, Ni Z, Yu T, Chen Z. Preparation of a self-assembled Rhein-doxorubicin nanogel targeting mitochondria and investigation on its antihepatoma activity. Mol Pharm. 2022;19(1):35–50.

    Article  CAS  PubMed  Google Scholar 

  4. Yi K, Liu S, Liu P, Luo X, Zhao J, Yan F, Pan Y, Liu J, Zhai Y, Hu G. Synergistic antibacterial activity of tetrandrine combined with colistin against MCR-mediated colistin-resistant Salmonella. Biomed Pharmacother. 2022;149:112873.

  5. Luan F, He X, Zeng N. Tetrandrine: a review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems. J Pharm Pharmacol. 2020;72(11):1491–512.

    Article  CAS  PubMed  Google Scholar 

  6. Liu C, Gong K, Mao X, Li W. Tetrandrine induces apoptosis by activating reactive oxygen species and repressing Akt activity in human hepatocellular carcinoma. Int J Cancer. 2011;129(6):1519–31.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao XM, Hu WX, Wu ZF, Chen YX, Zeng ZC. Tetrandrine enhances radiosensitization in human hepatocellular carcinoma cell lines. Radiat Res. 2018;190(4):385–95.

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Song J-W, Liu Y-S, Guo Y-R, Zhong W-X, Guo Y-P, Guo L. Nano–liposomes double loaded with curcumin and tetrandrine: preparation, characterization, hepatotoxicity and anti–tumor effects. Int J Mol Sci. 2022;23(12):6858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Razavi MS, Ebrahimnejad P, Fatahi Y, D’Emanuele A, Dinarvand R. Recent developments of nanostructures for the ocular delivery of natural compounds. Front Chem. 2022;10: 850757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Parmar PK, Wadhawan J, Bansal AK. Pharmaceutical nanocrystals: a promising approach for improved topical drug delivery. Drug Discov Today. 2021;26(10):2329–49.

    Article  CAS  PubMed  Google Scholar 

  11. Li J, Wang Z, Zhang H, Gao J, Zheng A. Progress in the development of stabilization strategies for nanocrystal preparations. Drug Deliv. 2021;28(1):19–36.

    Article  CAS  PubMed  Google Scholar 

  12. Chen K, Yang R, Shen FQ, Zhu HL. Advances in pharmacological activities and mechanisms of glycyrrhizic acid. Curr Med Chem. 2020;27(36):6219–43.

    Article  CAS  PubMed  Google Scholar 

  13. Wu L, Yang FR, Xing ML, Lu SF, Chen HL, Yang QW, Zhang YT, Lu Y, Huang Y. Multi-material basis and multi-mechanisms of the Dahuang Zhechong pill for regulating Treg/Th1 balance in hepatocellular carcinoma. Phytomedicine. 2022;100: 154055.

    Article  PubMed  Google Scholar 

  14. Li X, Sun R, Liu R. Natural products in licorice for the therapy of liver diseases: progress and future opportunities. Pharmacol Res. 2019;144:210–26.

    Article  CAS  PubMed  Google Scholar 

  15. Selyutina OY, Polyakov NE, Korneev DV, Zaitsev BN. Influence of glycyrrhizin on permeability and elasticity of cell membrane: perspectives for drugs delivery. Drug Deliv. 2016;23(3):858–65.

    Article  PubMed  Google Scholar 

  16. El-Marakby EM, Hathout RM, Taha I, Mansour S, Mortada ND. A novel serum-stable liver targeted cytotoxic system using valerate-conjugated chitosan nanoparticles surface decorated with glycyrrhizin. Int J Pharm. 2017;525(1):123–38.

    Article  CAS  PubMed  Google Scholar 

  17. Chopdey PK, Tekade RK, Mehra NK, Mody N, Jain NK. Glycyrrhizin conjugated dendrimer and multi-walled carbon nanotubes for liver specific delivery of doxorubicin. J Nanosci Nanotechnol. 2015;15(2):1088–100.

    Article  CAS  PubMed  Google Scholar 

  18. Stecanella LA, Bitencourt APR, Vaz GR, Quarta E, Silva Junior JOC, Rossi A. Glycyrrhizic acid and its hydrolyzed metabolite 18beta-glycyrrhetinic acid as specific ligands for targeting nanosystems in the treatment of liver cancer. Pharmaceutics. 2021;13(11):1792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao F-Q, Wang G-F, Xu D, Zhang H-Y, Cui Y-L, Wang Q-S. Glycyrrhizin mediated liver-targeted alginate nanogels delivers quercetin to relieve acute liver failure. Int J Biol Macromol. 2021;168:93–104.

    Article  CAS  PubMed  Google Scholar 

  20. Wu M, Lian B, Deng Y, Feng Z, Zhong C, Wu W, Huang Y, Wang L, Zu C, Zhao X. Resveratrol-loaded glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles: preparation, characterization, and targeting effect on liver tumors. J Biomater Appl. 2017;32(2):191–205.

    Article  PubMed  Google Scholar 

  21. Jaradat E, Weaver E, Meziane A, Lamprou DA. Microfluidic paclitaxel-loaded lipid nanoparticle formulations for chemotherapy. Int J Pharm. 2022;628: 122320.

    Article  CAS  PubMed  Google Scholar 

  22. Ye X, Patil H, Feng X, Tiwari RV, Lu J, Gryczke A, Kolter K, Langley N, Majumdar S, Neupane D, et al. Conjugation of hot-melt extrusion with high-pressure homogenization: a novel method of continuously preparing nanocrystal solid dispersions. AAPS PharmSciTech. 2015;17(1):78–88.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yan T, Wang H, Song X, Yan T, Ding Y, Luo K, Zhen J, He G, Nian L, Wang S, et al. Fabrication of apigenin nanoparticles using antisolvent crystallization technology: a comparison of supercritical antisolvent, ultrasonic-assisted liquid antisolvent, and high-pressure homogenization technologies. Int J Pharm. 2022;624:121981.

  24. Liang D, Su W, Zhao X, Li J, Hua Z, Miao S, Tan M. Microfluidic fabrication of pH-responsive nanoparticles for encapsulation and colon-target release of fucoxanthin. J Agric Food Chem. 2022;70(1):124–35.

    Article  CAS  PubMed  Google Scholar 

  25. Tian F, Cai L, Liu C, Sun J. Microfluidic technologies for nanoparticle formation. Lab Chip. 2022;22(3):512–29.

    Article  CAS  PubMed  Google Scholar 

  26. Ejeta F. Recent advances of microfluidic platforms for controlled drug delivery in nanomedicine. Drug Des Devel Ther. 2021;15:3881–91.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu Y, Yang G, Hui Y, Ranaweera S, Zhao CX. Microfluidic nanoparticles for drug delivery. Small. 2022;18(36): e2106580.

    Article  PubMed  Google Scholar 

  28. Fu Q, Sun J, Ai X, Zhang P, Li M, Wang Y, Liu X, Sun Y, Sui X, Sun L, et al. Nimodipine nanocrystals for oral bioavailability improvement: role of mesenteric lymph transport in the oral absorption. Int J Pharm. 2013;448(1):290–7.

    Article  CAS  PubMed  Google Scholar 

  29. Vidlarova L, Romero GB, Hanus J, Stepanek F, Muller RH. Nanocrystals for dermal penetration enhancement - effect of concentration and underlying mechanisms using curcumin as model. Eur J Pharm Biopharm. 2016;104:216–25.

    Article  CAS  PubMed  Google Scholar 

  30. Miao X, Li Y, Wang X. Lee SM-Y, Zheng Y. Transport mechanism of coumarin 6 nanocrystals with two particle sizes in MDCKII monolayer and larval zebrafish. ACS Appl Mater Interfaces. 2016;8(20):12620–30.

    Article  CAS  PubMed  Google Scholar 

  31. Hollis CP, Weiss HL, Leggas M, Evers BM, Gemeinhart RA, Li T. Biodistribution and bioimaging studies of hybrid paclitaxel nanocrystals: lessons learned of the EPR effect and image-guided drug delivery. J Control Release. 2013;172(1):12–21.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao R, Hollis CP, Zhang H, Sun L, Gemeinhart RA, Li T. Hybrid nanocrystals: achieving concurrent therapeutic and bioimaging functionalities toward solid tumors. Mol Pharm. 2011;8(5):1985–91.

    Article  CAS  PubMed  Google Scholar 

  33. Hollis CP, Weiss HL, Evers BM, Gemeinhart RA, Li T. In vivo investigation of hybrid paclitaxel nanocrystals with dual fluorescent probes for cancer theranostics. Pharm Res. 2014;31(6):1450–9.

    Article  CAS  PubMed  Google Scholar 

  34. Wang D, Su H, Kwok RTK, Hu X, Zou H, Luo Q, Lee MMS, Xu W, Lam JWY, Tang BZ. Rational design of a water-soluble NIR AIEgen, and its application in ultrafast wash-free cellular imaging and photodynamic cancer cell ablation. Chem Sci. 2018;9(15):3685–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang J, Wei J, Luo F, Dai J, Hu JJ, Lou X, Xia F. Enzyme-responsive peptide-based AIE bioprobes. Top Curr Chem (Cham). 2020;378(6):47.

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Zhang Y, Wang J, Liang XJ. Aggregation-induced emission (AIE) fluorophores as imaging tools to trace the biological fate of nano-based drug delivery systems. Adv Drug Deliv Rev. 2019;143:161–76.

    Article  CAS  PubMed  Google Scholar 

  37. Li S, Ji Z, Zou M, Nie X, Shi Y, Cheng G. Preparation, characterization, pharmacokinetics and tissue distribution of solid lipid nanoparticles loaded with tetrandrine. AAPS PharmSciTech. 2011;12(3):1011–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fang Y-P, Chuang C-H, Wu Y-J, Lin H-C, Lu Y-C. SN38-loaded <100 nm targeted liposomes for improving poor solubility and minimizing burst release and toxicity: in vitro and in vivo study. Int J Nanomed. 2018;13:2789–802.

    Article  CAS  Google Scholar 

  39. Liu C, Lv L, Guo W, Mo L, Huang Y, Li G, Huang X. Self-Nanoemulsifying drug delivery system of tetrandrine for improved bioavailability: physicochemical characterization and pharmacokinetic study. Biomed Res Int. 2018;2018:1–10.

    Google Scholar 

  40. Tang X, Liu Y, Yuan H, Gao R. Development of a self-assembled hydrogels based on carboxymethyl chitosan and oxidized hyaluronic acid containing tanshinone extract nanocrystals for enhanced dissolution and acne treatment. Pharmaceuticals (Basel). 2022;15(12):1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu Y, Yi L, Li E, Li Y, Lu Y, Wang P, Zhou H, Liu J, Hu Y, Wang D. Optimization of Glycyrrhiza polysaccharide liposome by response surface methodology and its immune activities. Int J Biol Macromol. 2017;102:68–75.

    Article  PubMed  Google Scholar 

  42. Zhao YQ, Wang LP, Ma C, Zhao K, Liu Y, Feng NP. Preparation and characterization of tetrandrine-phospholipid complex loaded lipid nanocapsules as potential oral carriers. Int J Nanomedicine. 2013;8:4169–81.

    PubMed  PubMed Central  Google Scholar 

  43. Guo J, Gu X, Mai Y, Zhao Y, Gou G, Yang J. Preparation and characterisation of tetrandrine nanosuspensions and in vitro estimate antitumour activity on A549 lung cancer cell line. J Microencapsul. 2020;37(5):384–93.

    Article  CAS  PubMed  Google Scholar 

  44. Su W, Liang Y, Meng Z, Chen X, Lu M, Han X, Deng X, Zhang Q, Zhu H, Fu T. Inhalation of tetrandrine-hydroxypropyl-beta-cyclodextrin inclusion complexes for pulmonary fibrosis treatment. Mol Pharm. 2020;17(5):1596–607.

    Article  CAS  PubMed  Google Scholar 

  45. Shi C, Ahmad Khan S, Wang K, Schneider M. Improved delivery of the natural anticancer drug tetrandrine. Int J Pharm. 2015;479(1):41–51.

    Article  CAS  PubMed  Google Scholar 

  46. Naguib MJ, Makhlouf AIA. Scalable flibanserin nanocrystal-based novel sublingual platform for female hypoactive sexual desire disorder: engineering, optimization adopting the desirability function approach and in vivo pharmacokinetic study. Drug Deliv. 2021;28(1):1301–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maeki M, Uno S, Niwa A, Okada Y, Tokeshi M. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery. J Control Release. 2022;344:80–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hood RR, DeVoe DL. High-throughput continuous flow production of nanoscale liposomes by microfluidic vertical flow focusing. Small. 2015;11(43):5790–9.

    Article  CAS  PubMed  Google Scholar 

  49. Shi H-h. Xiao Y, Ferguson S, Huang X, Wang N, Hao H-x: Progress of crystallization in microfluidic devices. Lab Chip. 2017;17(13):2167–85.

    Article  CAS  PubMed  Google Scholar 

  50. Volk AA, Epps RW, Abolhasani M. Accelerated development of colloidal nanomaterials enabled by modular microfluidic reactors: toward autonomous robotic experimentation. Adv Mater. 2020;33(4):e2004495.

  51. Khizar S, Zine N, Errachid A, Jaffrezic-Renault N, Elaissari A. Microfluidic-based nanoparticle synthesis and their potential applications. Electrophoresis. 2021;43(7–8):819–38.

    PubMed  Google Scholar 

  52. Yadavali S, Jeong H-H, Lee D, Issadore D. Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles. Nat Commun. 2018;9(1):1222.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  53. Liu H, Guo C, Shang Y, Zeng L, Jia H, Wang Z. A supramolecular nanoparticle of pemetrexed improves the anti-tumor effect by inhibiting mitochondrial energy metabolism. Front Bioeng Biotechnol. 2021;9:804747.

  54. Ganta S, Paxton JW, Baguley BC, Garg S. Formulation and pharmacokinetic evaluation of an asulacrine nanocrystalline suspension for intravenous delivery. Int J Pharm. 2009;367(1–2):179–86.

    Article  CAS  PubMed  Google Scholar 

  55. Selyutina OY, Polyakov NE. Glycyrrhizic acid as a multifunctional drug carrier – From physicochemical properties to biomedical applications: a modern insight on the ancient drug. Int J Pharm. 2019;559:271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shen C, Yang Y, Shen B, Xie Y, Qi J, Dong X, Zhao W, Zhu W, Wu W, Yuan H, et al. Self-discriminating fluorescent hybrid nanocrystals: efficient and accurate tracking of translocationviaoral delivery. Nanoscale. 2018;10(1):436–50.

    Article  CAS  Google Scholar 

  57. Liow SS, Dou Q, Kai D, Li Z, Sugiarto S, Yu CY, Kwok RT, Chen X, Wu YL, Ong ST, et al. Long-term real-time in vivo drug release monitoring with AIE thermogelling polymer. Small. 2017;13(7):1603404.

    Article  Google Scholar 

  58. Liu Y, Mao L, Yang S, Liu M, Huang H, Wen Y, Deng F, Li Y, Zhang X, Wei Y. Fabrication and biological imaging of hydrazine hydrate cross-linked AIE-active fluorescent polymeric nanoparticles. Mater Sci Eng C Mater Biol Appl. 2019;94:310–7.

    Article  CAS  PubMed  Google Scholar 

  59. Wu M, Zhong C, Deng Y, Zhang Q, Zhang X, Zhao X. Resveratrol loaded glycyrrhizic acid-conjugated human serum albumin nanoparticles for tail vein injection II: pharmacokinetics, tissue distribution and bioavailability. Drug Deliv. 2019;27(1):81–90.

    Article  PubMed Central  Google Scholar 

  60. Chen M, Li W, Zhang X, Dong Y, Hua Y, Zhang H, Gao J, Zhao L, Li Y, Zheng A. In vitro and in vivo evaluation of SN-38 nanocrystals with different particle sizes. Int J Nanomedicine. 2017;12:5487–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Witika BA, Smith VJ, Walker RB. Quality by design optimization of cold sonochemical synthesis of zidovudine-lamivudine nanosuspensions. Pharmaceutics. 2020;12(4):367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by Guangxi Natural Science Fundation Grant No. 2023GXNSFAA026316.

Author information

Authors and Affiliations

Authors

Contributions

J.H.: data management, analysis, article writing; S.H. and S.L.: nanocrystalline preparation; L.F.: nanocrystalline characterization; W.H. and Y.W.: TVP synthesis; D.H. and T.H.: review and editing; X.H.: supervision, conceptualization. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xingzhen Huang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1622 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Huang, S., Liu, S. et al. Preparation of Tetrandrine Nanocrystals by Microfluidic Method and Its In Vitro and In Vivo Evaluation. AAPS PharmSciTech 25, 4 (2024). https://doi.org/10.1208/s12249-023-02718-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02718-1

Keywords

Navigation