Skip to main content

Advertisement

Log in

Polymeric Nanocapsules Containing Ozonated Oil and Terbinafine Hydrochloride as a Potential Treatment Against Dermatophytes

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Terbinafine hydrochloride is a synthetic allylamine whose mechanism of action consists of inhibiting the enzyme squalene epoxidase that participates in the first stage of ergosterol synthesis, interfering with fungal membrane function. Ozonated oils are used for topical application of ozone, producing reactive oxygen species that cause cellular damage in microorganisms, therefore being an alternative treatment for acute and chronic skin infections. This study aimed to develop and characterize Eudragit® RS100 nanocapsules, obtained by interfacial deposition of preformed polymer method, containing 0.5% terbinafine hydrochloride and 5% ozonated sunflower seed oil as a potential treatment against dermatophytes. The polymeric nanocapsules were characterized regarding particle size, zeta potential, pH, drug content, encapsulation efficiency, and stability. The in vitro drug release, in vitro skin permeation, and in vitro antifungal activity were also evaluated. The particle size was around 150 nm with a narrow size distribution, the zeta potential was around + 6 mV, and the pH was 2.2. The drug content was close to 95% with an encapsulation efficiency of 53%. The nanocapsules were capable to control the drug release and the skin permeation. The in vitro susceptibility test showed greater antifungal activity for the developed nanocapsules, against all dermatophyte strains tested, compared to the drug solution. Therefore, the polymeric nanocapsules suspension containing terbinafine hydrochloride and ozonated oil can be considered a potential high-efficacy candidate for the treatment of dermatophytosis, with a possible reduction in the drug dose and frequency of applications. Studies to evaluate safety and efficacy in vivo still need to be performed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Adapted from Oliveira et al. [35])

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author.

References

  1. Motedayen N, Hashemi SJ, Rezaei S, Bayat M. In-vitro evaluation of antifungal activity of terbinafine and terbinafine nano-drug against clinical isolates of dermatophytes. Jundishapur J Microbiol. 2018;11:1–6. https://doi.org/10.5812/jjm.62351.

  2. Al-Khikani F. Dermatophytosis a worldwide contiguous fungal infection: growing challenge and few solutions. Biomed Biotechnol Res J. 2020;4:117–22. https://doi.org/10.4103/bbrj.bbrj_1_20.

    Article  Google Scholar 

  3. Rinaldi MG. Dermatophytosis: epidemiological and microbiological update. J Am Acad Dermatol. 2000;43:S120–4.

    Article  CAS  PubMed  Google Scholar 

  4. Bangia R, Sharma G, Dogra S, Katare OP. Nanotechnological interventions in dermatophytosis: from oral to topical, a fresh perspective. Expert Opin Drug Deliv. 2019;16(4):377–96. https://doi.org/10.1080/17425247.2019.1593962.

    Article  CAS  PubMed  Google Scholar 

  5. Smith MB, McGinnis MR. Chapter 82- Dermatophytosis. In: Guerrant RL, Walker DH, Weller PF. Tropical Infectious Diseases: Principles, Pathogens and Practice (Third Edition). W.B. Saunders; 2011. p.559–64. https://doi.org/10.1016/B978-0-7020-3935-5.00082-3.

  6. Gaba B, Fazil M, Khan S, Ali A, Baboota S, Ali J. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bulletin Faculty Pharmacy, Cairo University. 2015;53:147–59. https://doi.org/10.1016/j.bfopcu.2015.10.001.

    Article  Google Scholar 

  7. Liang QF, Jin XY, Wang XL, Sun XG. Effect of topical application of terbinafine on fungal keratitis. Chin Med J (Engl). 2009;122:1884–8.

    PubMed  Google Scholar 

  8. Gupta AK, Cooper EA. Update in antifungal therapy of dermatophytosis. Mycopathologia. 2008;166:353–67. https://doi.org/10.1007/s11046-008-9109-0.

    Article  PubMed  Google Scholar 

  9. Karri VVSNR, Raman SK, Kuppusamy G, Mulukutla S, Ramaswamy S, Malayandi R. Terbinafine hydrochloride loaded nanoemulsion based gel for topical application. J Pharm Investig. 2015;45:79–89. https://doi.org/10.1007/s40005-014-0149-9.

    Article  CAS  Google Scholar 

  10. Erdal MS, Peköz AY, Aksu B, Araman A. Impacts of chemical enhancers on skin permeation and deposition of terbinafine. Pharmaceut Develop Technol. 2013;19:565–70. https://doi.org/10.3109/108374502013813538.

    Article  Google Scholar 

  11. Mahboubi M, HeidaryTabar R, Mahdizadeh E. The anti-dermatophyte activity of Zataria multiflora essential oils. J Mycol Med. 2017;27:232–7. https://doi.org/10.1016/j.mycmed.2017.03.001.

    Article  CAS  PubMed  Google Scholar 

  12. Flores FC, de Lima JA, Ribeiro RF, Alves SH, Rolim CMB, Beck RCR, et al. Antifungal activity of nanocapsule suspensions containing tea tree oil on the growth of Trichophyton rubrum. Mycopathologia. 2013;175:281–6. https://doi.org/10.1007/s11046-013-9622-7.

    Article  CAS  PubMed  Google Scholar 

  13. Geweely NSI. Antifungal activity of ozonized olive oil (Oleozone). Int J Agric Biol. 2006;8:670–5.

    CAS  Google Scholar 

  14. Ouf SA, Moussa TA, Abd-Elmegeed AM, Eltahlawy SR. Anti-fungal potential of ozone against some dermatophytes. Brazilian J Microbiol. 2016;47:697–702. https://doi.org/10.1016/2Fj.bjm.2016.04.014.

    Article  CAS  Google Scholar 

  15. Valacchi G, Fortino V, Bocci V. The dual action of ozone on the skin. Br J Dermatol. 2005;153:1096–100. https://doi.org/10.1111/j.1365-2133.2005.06939.x.

    Article  CAS  PubMed  Google Scholar 

  16. Pryor WA, Uppu RM. A kinetic model for the competitive reactions of ozone with amino acid residues in proteins in reverse micelles. J Biol Chem. 1993;268:3120–6. https://doi.org/10.1016/S0021-9258(18)53667-X.

    Article  CAS  PubMed  Google Scholar 

  17. Tiwari S, Mistry P, Patel V. SLNs based on co-processed lipids for topical delivery of terbinafine hydrochloride. Journal of Pharmaceutics and Drug Development. 2014;2(4):1–8. https://doi.org/10.15744/2348-9782.1.604.

  18. Abobakr FE, Fayez SM, Elwazzan VS, Sakran W. Effect of different nail penetration enhancers in solid lipid nanoparticles containing terbinafine hydrochloride for treatment of onychomycosis. AAPS PharmSciTech. 2021;22:1–12. https://doi.org/10.1208/s12249-020-01893-9.

    Article  CAS  Google Scholar 

  19. Gul U, Khan MI, Madni A, Sohail MF, Rehman M, Rasul A, et al. Olive oil and clove oil-based nanoemulsion for topical delivery of terbinafine hydrochloride: in vitro and ex vivo evaluation. Drug Delivery. 2022;29:600–12.

  20. Koutsoulas C, Pippa N, Demetzos C, Zabka M. Preparation of liposomal nanoparticles incorporating terbinafine in vitro drug release studies. J Nanosci Nanotechnol. 2014;14:4529–33. https://doi.org/10.1166/jnn.2014.9026.

    Article  CAS  PubMed  Google Scholar 

  21. Tuncay Tanriverdi S, Hilmioʇlu Polat S, Yeşim Metin D, Kandiloʇlu G, Özer Ö. Terbinafine hydrochloride loaded liposome film formulation for treatment of onychomycosis: in vitro and in vivo evaluation. 2015;26:163–73. https://doi.org/10.3109/08982104.2015.1067892.

    Article  CAS  Google Scholar 

  22. Karri VV, Raman S, Kuppusamy G, Sanapalli B, Wadhwani A, Patel V, et al. In vitro antifungal activity of a novel allylamine antifungal nanoemulsion gel. J Nanosci: Current Res. 2018;03:1–5.

    Google Scholar 

  23. Paliwal S, Kaur G. Formulation and characterization of topical nano emulgel of terbinafine. Universal J Pharmaceut Res. 2019;3:28–37.

    Google Scholar 

  24. Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Positively charged polymeric nanoparticle reservoirs of terbinafine hydrochloride: preclinical implications for controlled drug delivery in the aqueous humor of rabbits. AAPS PharmSciTech. 2013;14:782. https://doi.org/10.1208/s12249-013-9964-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martiska J, Snejdrova E, Drastik M, Matysova L, Dittrich M, Loskot J, et al. Terbinafine-loaded branched PLGA-based cationic nanoparticles with modifiable properties. 2019;24:1308–16. https://doi.org/10.1080/10837450.2019.1667387.

    Article  CAS  Google Scholar 

  26. Contri RV, Kaiser M, Poletto FS, Pohlmann AR, Guterres SS. Simultaneous control of capsaicinoids release from polymeric nanocapsules. J Nanosci Nanotechnol. 2011;11:2398–406. https://doi.org/10.1166/jnn.2011.3521.

    Article  CAS  PubMed  Google Scholar 

  27. Contri RV, Frank LA, Kaiser M, Pohlmann AR, Guterres SS. The use of nanoencapsulation to decrease human skin irritation caused by capsaicinoids. Int J Nanomedicine. 2014;9:951. https://doi.org/10.2147/ijn.s56579.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Frank LA, Contri RV, Beck RCR, Pohlmann AR, Guterres SS. Improving drug biological effects by encapsulation into polymeric nanocapsules. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7:623–39. https://doi.org/10.1002/wnan.1334.

    Article  CAS  PubMed  Google Scholar 

  29. Firmino K de O, Santos FL Dos, Marques MS, Costa BS da Collar G da S, Caierão J, et al. Nanometric systems containing ozonated oil with potential activity against skin pathogens. Ozone: Sci Eng. 2022;45(4):398–409. https://doi.org/10.1080/01919512.2022.2125362.

  30. dos Santos RB, Funguetto-Ribeiro AC, Maciel TR, Fonseca DP, Favarin FR, Nogueira-Librelotto DR, et al. In vivo and in vitro per se effect evaluation of Polycaprolactone and Eudragit® RS100-based nanoparticles. Biomedicine Pharmacotherapy. 2022;153:113410. https://doi.org/10.1016/j.biopha.2022.113410.

    Article  CAS  PubMed  Google Scholar 

  31. Cardoso AML, Oliveira EE, Machado BAS, Marcelino HR. Eudragit®-based nanoparticles for controlled release through topical use. J Nanopart Res. 2023;25:1–14. https://doi.org/10.1007/s11051-023-05678-6.

    Article  Google Scholar 

  32. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55(1):R1–4. https://doi.org/10.1016/0378-5173(89)90281-0.

    Article  CAS  Google Scholar 

  33. ASTM International. Standard guide for measurement of electrophoretic mobility and zeta potential of nanosized biological materials. 2018. http://www.astm.org. Accessed 20 Jul 2023.

  34. Tagliari MP, Kuminek G, Borgmann SHM, Bertol CD, Cardoso SG, Stulzer HK. Terbinafine: optimization of a LC method for quantitative analysis in pharmaceutical formulations and its application for a tablet dissolution test. Quim Nova. 2010;33:1790–3. https://doi.org/10.1590/S0100-40422010000800029.

    Article  CAS  Google Scholar 

  35. Oliveira CP, Venturini CG, Donida B, Poletto FS, Guterres SS, Pohlmann AR. An algorithm to determine the mechanism of drug distribution in lipid-core nanocapsule formulations. Soft Matter. 2012;9:1141–50. https://doi.org/10.1039/C2SM26959G.

    Article  Google Scholar 

  36. European Medicines Agency. International conference on harmonization of technical requirements for registration of pharmaceuticals for human use (ICH). Valid Anal Proced: Text Methodol. 1995;Q2(R1):447–60.

    Google Scholar 

  37. Haq A, Goodyear B, Ameen D, Joshi V, Michniak-Kohn B. Strat-M® synthetic membrane: permeability comparison to human cadaver skin. Int J Pharm. 2018;547:432–7. https://doi.org/10.1016/j.ijpharm.2018.06.012.

    Article  CAS  PubMed  Google Scholar 

  38. CLSI M38-A2; Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. approved standard—Second Edition. Wayne: Clinical and Laboratory Standards Institute; 2008; 28: p. 29. https://clsi.org/standards/products/microbiology/documents/m38/. Accessed 6 Apr 2023.

  39. Ghannoum M, Isham N, Verma A, Plaum S, Fleischer A, Hardas B. In vitro antifungal activity of naftifine hydrochloride against dermatophytes. Antimicrob Agents Chemother. 2013;57:4369. https://doi.org/10.1128/aac.01084-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Martínez Rivas CJ, Tarhini M, Badri W, Miladi K, Greige-Gerges H, Nazari QA, et al. Nanoprecipitation process: from encapsulation to drug delivery. Int J Pharm. 2017;532:66–81. https://doi.org/10.1016/j.ijpharm.2017.08.064.

    Article  CAS  PubMed  Google Scholar 

  41. Zilles JC, Duarte LP, Ruaro TC, Zimmer AR, Kulkamp-Guerreiro IC, Contri RV. Nanoemulsion containing kojic dipalmitate and rosehip oil: a promising formulation to treat melasma. Pharmaceutics. 2023;15:468. https://doi.org/10.3390/pharmaceutics15020468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bhattacharjee S. DLS and zeta potential — what they are and what they are not? J Control Release. 2016;235:337–51. https://doi.org/10.1016/j.jconrel.2016.06.017.

    Article  CAS  PubMed  Google Scholar 

  43. Contri RV, Ribeiro KLF, Fiel LA, Pohlmann AR, Guterres SS. Vegetable oils as core of cationic polymeric nanocapsules: influence on the physicochemical properties. J Exp Nanosci. 2013;8:913–24. https://doi.org/10.1080/17458080.2011.620019.

    Article  CAS  Google Scholar 

  44. Barradas TN, Campos VEB, Senna JP, Coutinho CSC, Tebaldi BS, Silva KGH, et al. Development and characterization of promising o/w nanoemulsions containing sweet fennel essential oil and non-ionic sufactants. Colloids Surf a Physicochem Eng Asp. 2015;480:214–21. https://doi.org/10.1016/j.colsurfa.2014.12.001.

    Article  CAS  Google Scholar 

  45. Proksch E. pH in nature, humans and skin. J Dermatol. 2018;45:1044–52. https://doi.org/10.1111/1346-8138.14489.

    Article  CAS  PubMed  Google Scholar 

  46. Yang Y, Ou R, Guan S, Ye X, Hu B, Zhang Y, et al. A novel drug delivery gel of terbinafine hydrochloride with high penetration for external use. Drug Deliv. 2015;22:1086–93. https://doi.org/10.3109/10717544.2013.878856.

    Article  CAS  PubMed  Google Scholar 

  47. Shanta GA, Shivappan NN, Avinash BS, Pooja YP. Formulation and evaluation of topical microemulgel containing terbinafine hydrochloride. Int J Biol Pharm Allied Sci. 2021;10:185–95. https://doi.org/10.9734/jpri/2021/v33i47A33075.

    Article  Google Scholar 

  48. Beber TC, De Andrade DF, Dos Santos CP, Pohlmann AR, Guterres SS, Ruver Beck RC. Cationic polymeric nanocapsules as a strategy to target dexamethasone to viable epidermis: skin penetration and permeation studies. J Nanosci Nanotechnol. 2016;16:1331–8. https://doi.org/10.1166/jnn.2016.11670.

    Article  CAS  PubMed  Google Scholar 

  49. Casarini TPA, Frank LA, Benin T, Onzi G, Pohlmann AR, Guterres SS. Innovative hydrogel containing polymeric nanocapsules loaded with phloretin: enhanced skin penetration and adhesion. Materials Sci Eng. 2021;120:111681. https://doi.org/10.1016/j.msec.2020.111681.

    Article  CAS  Google Scholar 

  50. Aydın TRS, Kazancı F. Synthesis and characterization of ozonated oil nanoemulsions. J Am Oil Chem Soc. 2018;95:1385–98. https://doi.org/10.1002/aocs.12150.

    Article  CAS  Google Scholar 

  51. Goswami PD. Stability-indicating RP-HPLC method for analysis of terbinafine hydrochloride in bulk and in tablet dosage form. Int J Pharm Pharm Sci. 2013;5:536–40.

    CAS  Google Scholar 

  52. Devyani M Rode, Dr. Nutan Rao. Stability-indicating method development and validation of itraconazole and terbinafine HCl in bulk and pharmaceutical tablet dosage form. Asian J Pharm Clin Res. 2019;12:51–5. https://doi.org/10.22159/ajpcr.2019.v12i9.33922.

  53. Reddy K, Bannimath G, Reddy M, Nanjundappa A. Estimation of terbinafine HCl in tablet dosage form by green gas chromatography. J Appl Pharm Sci. 2021;11:087–93. https://doi.org/10.7324/JAPS.2021.110610.

    Article  CAS  Google Scholar 

  54. Llera-Rojas VG, Hernández-Salgado M, Quintanar-Guerrero D, Leyva-Gómez G, Mendoza-Elvira S, Villalobos-García R, et al. Comparative study of the release profiles of ibuprofen from polymeric nanocapsules and nanospheres. J Mex Chem Soc. 2019;63:61–70. https://doi.org/10.29356/jmcs.v63i2.943.

    Article  CAS  Google Scholar 

  55. Venturini CG, Bruinsmann FA, Contri RV, Fonseca FN, Frank LA, D’amore CM, et al. Co-encapsulation of imiquimod and copaiba oil in novel nanostructured systems: promising formulations against skin carcinoma. Eur J Pharm Sci. 2015;79:36–43. https://doi.org/10.1016/j.ejps.2015.08.016.

    Article  CAS  PubMed  Google Scholar 

  56. Karadzovska D, Riviere JE. Assessing vehicle effects on skin absorption using artificial membrane assays. Eur J Pharm Sci. 2013;50:569–76. https://doi.org/10.1016/j.ejps.2013.02.020.

    Article  CAS  PubMed  Google Scholar 

  57. Abdel-Rashid RS, Helal DA, Alaa-Eldin AA, Abdel-Monem R. Polymeric versus lipid nanocapsules for miconazole nitrate enhanced topical delivery: in vitro and ex vivo evaluation. 2022;29:294–304. https://doi.org/10.1080/10717544.2022.2026535.

    Article  CAS  Google Scholar 

  58. De Brum TL, Fiel LA, Contri RV, Guterres SS, Pohlmann AR. Polymeric nanocapsules and lipid-core nanocapsules have diverse skin penetration. J Nanosci Nanotechnol. 2015;15:773–80. https://doi.org/10.1166/jnn.2015.9185.

    Article  CAS  PubMed  Google Scholar 

  59. Tanriverdi TS, Hilmioʇlu Polat S, Yeşim Metin D, Kandiloʇlu G, Özer Ö. Terbinafine hydrochloride loaded liposome film formulation for treatment of onychomycosis: in vitro and in vivo evaluation. 2016;26(2):163–73. https://doi.org/10.3109/08982104.2015.1067892.

    Article  CAS  Google Scholar 

  60. Contri RV, Katzer T, Ourique AF, Da Silva ALM, Beck RCR, Pohlmann AR, et al. Combined effect of polymeric nanocapsules and chitosan hydrogel on the increase of capsaicinoids adhesion to the skin surface. J Biomed Nanotechnol. 2014;10:820–30. https://doi.org/10.1166/jbn.2014.1752.

    Article  CAS  PubMed  Google Scholar 

  61. Nikaein D, Sharifzadeh A, Khosravi AR. Fungicidal versus fungistatic activity of five Iranian essences against fluconazole resistant Candida species. J Herbmed Pharmacol. 2018;7:287–93. https://doi.org/10.15171/jhp.2018.43.

    Article  CAS  Google Scholar 

  62. Hazen KC. Fungicidal versus fungistatic activity of terbinafine and itraconazole: an in vitro comparison. J Am Acad Dermatol. 1998;38:S37-41.

    Article  CAS  PubMed  Google Scholar 

  63. Lam P-L, Wong M-M, Hung L-K, Yung L-H,Tang JC-O, Lam K-H, et al. Miconazole and terbinafine induced reactive oxygen species accumulation and topical toxicity in human keratinocytes. 2022;45(2):834–8. https://doi.org/10.1080/01480545.2020.1778019.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Silvia Stanisçuaski Guterres for the access to the equipment for nanoparticle characterization. We acknowledge Evonik for the Eudragit® RS100 donation.

Funding

This research was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (project number 423066/2018–8) and Universidade Federal do Rio Grande do Sul (project number 35887).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: F.L.S., A.U.M., M.S.M., A.M.F., I.C.K.G., and R.V.C.; investigation: F.L.S., J.C.Z., and B.S.C.; data curation: F.L.S, J.C.Z., and R.V.C.; writing—original draft preparation: F.L.S., A.U.M., J.C.Z., and R.V.C.; writing—review and editing: F.L.S., J.C.Z., M.S.M., B.S.F., A.M.F., I.C.K.G., and R.V.C.; supervision: A.M.F., I.C.K.G., and R.V.C.; project administration: R.V.C.; resources and funding acquisition: A.M.F., I.C.K.G., and R.V.C. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Renata Vidor Contri.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, F.L., Zilles, J.C., Machado, A.U. et al. Polymeric Nanocapsules Containing Ozonated Oil and Terbinafine Hydrochloride as a Potential Treatment Against Dermatophytes. AAPS PharmSciTech 24, 198 (2023). https://doi.org/10.1208/s12249-023-02657-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02657-x

Keywords

Navigation