Skip to main content

Advertisement

Log in

Quercetin-Loaded Mesoporous Silica Nanoparticle–Based Lyophilized Tablets for Enhanced Physicochemical Features and Dissolution Rate: Formulation, Optimization, and In Vitro Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Mesoporous silica nanoparticles (MSNPs) have been proposed as a potential approach for stabilizing the amorphous state of poorly water-soluble actives. This study aimed to improve the physiochemical characteristics of poorly water-soluble quercetin (QT) through a novel lyophilized formulation. Various parameters, including solvent polarity, QT-carrier mass ratio, and adsorption time, were studied to improve the loading of QT into MSNPs. The optimized loaded MSNPs were formulated into lyophilized tablets through a freeze-drying process using hydrophilic polyvinylpyrrolidone (PVP-K30) as a polymeric stabilizer and water-soluble sucrose as a cryoprotectant. The effect of PVP-K30 and sucrose on the particle size, disintegration time, friability, and time required to release 90% of QT were studied using 32 full factorial design. The optimized formula was characterized using different evaluating techniques; for instance, differential scanning calorimetry, X-ray diffractometry, Fourier transform infrared spectroscopy, drug content, moisture content, and saturation solubility. The analysis proved that QT was consistently kept in the nanosize range with a narrow size distribution. The loaded silica nanoparticles and the optimized formulation are in an amorphous state devoid of any chemical interaction with the silica matrix or the lyophilization excipients. The optimized formula also featured low friability (less than 1%), fast disintegration (< 30 s), and a pronounced enhancement in saturation solubility and dissolution rate. Briefly, we established that the lyophilized MSNPs-based tablet would be a potential strategy for improving the rate of dissolution and, ultimately, the bioavailability of the poorly water-soluble QT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu TH, Yen FL, Lin LT, Tsai TR, Lin CC, Cham TM. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int J Pharm. 2008;346:160–8.

    Article  CAS  Google Scholar 

  2. Baksi R, Singh DP, Borse SP, Rana R, Sharma V, Nivsarkar M. In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed \& Pharmacother. Elsevier; 2018;106:1513–26.

  3. Zhang Y, Yang Y, Tang K, Hu X, Zou G. Physicochemical characterization and antioxidant activity of quercetin-loaded chitosan nanoparticles. J Appl Polym Sci. Wiley Online Library; 2008;107:891–7.

  4. Parhi B, Bharatiya D, Swain SK. Application of quercetin flavonoid based hybrid nanocomposites: A review. Saudi Pharm J Elsevier. 2020;28:1719–32.

    Article  CAS  Google Scholar 

  5. Ninfali P, Antonelli A, Magnani M, Scarpa ES. Antiviral properties of flavonoids and delivery strategies. Nutrients. MDPI; 2020;12:2534.

  6. Azeem M, Hanif M, Mahmood K, Ameer N, Chughtai FRS, Abid U. An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: A review. Polym Bull. Springer; 2022;1–22.

  7. Ibrahim D, Kishawy ATY, Khater SI, Khalifa E, Ismail TA, Mohammed HA, et al. Interactive effects of dietary quercetin nanoparticles on growth, flesh antioxidant capacity and transcription of cytokines and Aeromonas hydrophila quorum sensing orchestrating genes in Nile tilapia (Oreochromis niloticus). Fish \& Shellfish Immunol. Elsevier; 2021;119:478–89.

  8. Sun M, Nie S, Pan X, Zhang R, Fan Z, Wang S. Quercetin-nanostructured lipid carriers: Characteristics and anti-breast cancer activities in vitro. Colloids Surfaces B Biointerfaces Elsevier. 2014;113:15–24.

    Article  CAS  Google Scholar 

  9. Saraswat AL, Maher TJ. Development and optimization of stealth liposomal system for enhanced in vitro cytotoxic effect of quercetin. J Drug Deliv Sci Technol. Elsevier; 2020;55:101477.

  10. Han Q, Wang X, Cai S, Liu X, Zhang Y, Yang L, et al. Quercetin nanoparticles with enhanced bioavailability as multifunctional agents toward amyloid induced neurotoxicity. J Mater Chem B. Royal Society of Chemistry; 2018;6:1387–93.

  11. Kandemir K, Tomas M, McClements DJ, Capanoglu E. Recent advances on the improvement of quercetin bioavailability. Trends Food Sci \& Technol. Elsevier; 2022;119:192–200.

  12. Khursheed R, Singh SK, Wadhwa S, Gulati M, Kapoor B, Jain SK, et al. Development of mushroom polysaccharide and probiotics based solid self-nanoemulsifying drug delivery system loaded with curcumin and quercetin to improve their dissolution rate and permeability: State of the art. Int J Biol Macromol Elsevier. 2021;189:744–57.

    Article  CAS  Google Scholar 

  13. Talarico L, Consumi M, Leone G, Tamasi G, Magnani A. Solid lipid nanoparticles produced via a coacervation method as promising carriers for controlled release of quercetin. Molecules. MDPI; 2021;26:2694.

  14. Saqezi AS, Kermanian M, Ramazani A, Sadighian S. Synthesis of graphene oxide/iron oxide/Au nanocomposite for quercetin delivery. J Inorg Organomet Polym Mater Springer. 2022;32:1541–50.

    Article  CAS  Google Scholar 

  15. Patel HS, Shaikh SJ, Ray D, Aswal VK, Vaidya F, Pathak C, et al. Formulation, solubilization, and in vitro characterization of quercetin-incorporated mixed micelles of PEO-PPO-PEO block copolymers. Appl Biochem Biotechnol Springer. 2022;194:445–63.

    Article  CAS  Google Scholar 

  16. Gabriele M, Caddeo C, Lubrano V, Valenti D, Pucci L. Encapsulation of bioactive fermented wheat (Lisosan G) in Eudragit-liposomes. LWT. Elsevier; 2022;156:113044.

  17. Seçil K, DERMAN S. Production, characterization and antioxidant activity evaluation of quercetin loaded PLGA nanofibers. Sigma J Eng Nat Sci. 2022;40:433–40.

  18. Kankala RK, Han Y-H, Na J, Lee C-H, Sun Z, Wang S-B, et al. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv Mater. Wiley Online Library; 2020;32:1907035.

  19. Zhou S, Zhong Q, Wang Y, Hu P, Zhong W, Huang C-B, et al. Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coord Chem Rev. Elsevier; 2022;452:214309.

  20. Zhang X, Zhu Y, Fan L, Ling J, Yang L-Y, Wang N, et al. Delivery of curcumin by fucoidan-coated mesoporous silica nanoparticles: fabrication, characterization, and in vitro release performance. Int J Biol Macromol: Elsevier; 2022.

    Google Scholar 

  21. Huang R, Shen Y-W, Guan Y-Y, Jiang Y-X, Wu Y, Rahman K, et al. Mesoporous silica nanoparticles: facile surface functionalization and versatile biomedical applications in oncology. Acta Biomater Elsevier. 2020;116:1–15.

    Article  CAS  Google Scholar 

  22. Hegde V, Pandit P, Rananaware P, Brahmkhatri VP. Sulfonic acid-functionalized mesoporous silica catalyst with different morphology for biodiesel production. Front Chem Sci Eng. Springer; 2022;1–13.

  23. Kankala RK, Zhang H, Liu C-G, Kanubaddi KR, Lee C-H, Wang S-B, et al. Metal species--encapsulated mesoporous silica nanoparticles: current advancements and latest breakthroughs. Adv Funct Mater. Wiley Online Library; 2019;29:1902652.

  24. Contreras CB, Azzaroni O, Soler-Illia G. 1.16 Use of confinement effects in mesoporous materials to build tailored nanoarchitectures. Compr Nanosci Nanotechnol. Academic Press; 2019;2:331–48.

  25. Maleki A, Kettiger H, Schoubben A, Rosenholm JM, Ambrogi V, Hamidi M. Mesoporous silica materials: from physico-chemical properties to enhanced dissolution of poorly water-soluble drugs. J Control Release Elsevier. 2017;262:329–47.

    Article  CAS  Google Scholar 

  26. Rajput S, Vadia N, Mahajan M. Role of mesoporous silica nanoparticles as drug carriers: evaluation of diverse mesoporous material nanoparticles as potential host for various applications. Adv Funct Porous Mater. Springer; 2022;205–34.

  27. Ahmed TA. Formulation and clinical investigation of optimized vinpocetine lyoplant-tabs: new strategy in development of buccal solid dosage form. Drug Des Devel Ther. Dove Press; 2019;13:205.

  28. Ghourichay MP, Kiaie SH, Nokhodchi A, Javadzadeh Y. Formulation and quality control of orally disintegrating tablets (ODTs): recent advances and perspectives. Biomed Res Int. Hindawi; 2021;2021.

  29. Singh S, Virmani T, Virmani R, Kumar P, Mahlawat G. Fast dissolving drug delivery systems: formulation, preparation techniques and evaluation. Univ J Pharm Res. 2018;3:60–9.

    CAS  Google Scholar 

  30. Trenkenschuh E, Friess W. Freeze-drying of nanoparticles: how to overcome colloidal instability by formulation and process optimization. Eur J Pharm Biopharm Elsevier. 2021;165:345–60.

    Article  CAS  Google Scholar 

  31. Popova M, Trendafilova I, Tsacheva I, Mitova V, Kyulavska M, Koseva N, et al. Amino-modified KIT-6 mesoporous silica/polymer composites for quercetin delivery: experimental and theoretical approaches. Microporous Mesoporous Mater. 2018;270:40–7.

    Article  CAS  Google Scholar 

  32. E.A. AbouAitah K, A. Farghali A. Mesoporous silica materials in drug delivery system: pH/glutathione- responsive release of poorly water-soluble pro-drug quercetin from two and three-dimensional pore-structure nanoparticles. J Nanomed Nanotechnol. 2016;07.

  33. Liu M, Fu M, Yang X, Jia G, Shi X, Ji J, et al. Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer. Colloids Surfaces B Biointerfaces. Elsevier; 2020;196:111284.

  34. Lv X, Zhang L, Xing F, Lin H. Controlled synthesis of monodispersed mesoporous silica nanoparticles: particle size tuning and formation mechanism investigation. Microporous Mesoporous Mater Elsevier. 2016;225:238–44.

    Article  CAS  Google Scholar 

  35. He Y, Liang S, Long M, Xu H. Mesoporous silica nanoparticles as potential carriers for enhanced drug solubility of paclitaxel. Mater Sci Eng C Elsevier. 2017;78:12–7.

    Article  CAS  Google Scholar 

  36. Patel AR, Heussen PCM, Hazekamp J, Drost E, Velikov KP. Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium. Food Chem Elsevier. 2012;133:423–9.

    Article  CAS  Google Scholar 

  37. Liu Y, Wu H, Chong Y, Wamer WG, Xia Q, Cai L, et al. Platinum nanoparticles: efficient and stable catechol oxidase mimetics. ACS Appl Mater \& Interfaces. ACS Publications; 2015;7:19709–17.

  38. Ugazio E, Gastaldi L, Brunella V, Scalarone D, Jadhav SA, Oliaro-Bosso S, et al. Thermoresponsive mesoporous silica nanoparticles as a carrier for skin delivery of quercetin. Int J Pharm Elsevier. 2016;511:446–54.

    Article  CAS  Google Scholar 

  39. de Oliveira PR, Hoffmann S, Pereira S, Goycoolea FM, Schmitt CC, Neumann MG. Self-assembled amphiphilic chitosan nanoparticles for quercetin delivery to breast cancer cells. Eur J Pharm Biopharm Elsevier. 2018;131:203–10.

    Article  Google Scholar 

  40. Essifi K, Brahmi M, Berraaouan D, Amrani A, El Bachiri A, Fauconnier ML, et al. Development and characterization of alginate@ montmorillonite hybrid microcapsules for encapsulation and controlled release of quercetin: Effect of clay type. Mater Today Proc: Elsevier; 2022.

    Google Scholar 

  41. Rahmati M-A, Rashidzadeh H, Hosseini M-J, Sadighian S, Kermanian M. Self-assembled magnetic polymeric micelles for delivery of quercetin: toxicity evaluation on isolated rat liver mitochondria. J Biomater Sci Polym Ed. Taylor \& Francis; 2022;33:279–98.

  42. Elgindy N, Elkhodairy K, Molokhia A, Elzoghby A. Lyophilized flutamide dispersions with polyols and amino acids: preparation and in vitro evaluation. Drug Dev Ind Pharm. Taylor \& Francis; 2011;37:446–55.

  43. Gardouh AR, Nasef AM, Mostafa Y, Gad S. Design and evaluation of combined atorvastatin and ezetimibe optimized self- nano emulsifying drug delivery system. J Drug Deliv Sci Technol [Internet]. Elsevier B.V.; 2020;60:102093. Available from: https://doi.org/10.1016/j.jddst.2020.102093

  44. Atiyah NA, Albayati TM, Atiya MA. Functionalization of mesoporous MCM-41 for the delivery of curcumin as an anti-inflammatory therapy. Adv Powder Technol [Internet]. Society of Powder Technology Japan; 2022;33:103417. Available from: https://doi.org/10.1016/j.apt.2021.103417

  45. Wu S-H, Mou C-Y, Lin H-P. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev. Royal Society of Chemistry; 2013;42:3862–75.

  46. Geng H, Zhao Y, Liu J, Cui Y, Wang Y, Zhao Q, et al. Hollow mesoporous silica as a high drug loading carrier for regulation insoluble drug release. Int J Pharm Elsevier. 2016;510:184–94.

    Article  CAS  Google Scholar 

  47. Wu KC-W, Yamauchi Y. Controlling physical features of mesoporous silica nanoparticles (MSNs) for emerging applications. J Mater Chem. Royal Society of Chemistry; 2012;22:1251–6.

  48. Sapino S, Ugazio E, Gastaldi L, Miletto I, Berlier G, Zonari D, et al. Mesoporous silica as topical nanocarriers for quercetin: characterization and in vitro studies. Eur J Pharm Biopharm [Internet]. Elsevier B.V.; 2015;89:116–25. Available from: https://doi.org/10.1016/j.ejpb.2014.11.022

  49. Sarkar A, Ghosh S, Chowdhury S, Pandey B, Sil PC. Targeted delivery of quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. Biochim Biophys Acta - Gen Subj [Internet]. Elsevier B.V.; 2016;1860:2065–75. Available from: https://doi.org/10.1016/j.bbagen.2016.07.001

  50. Vergara-Castañeda H, Hernandez-Martinez AR, Estevez M, Mendoza S, Luna-Barcenas G, Pool H. Quercetin conjugated silica particles as novel biofunctional hybrid materials for biological applications. J Colloid Interface Sci. 2016;466:44–55.

    Article  Google Scholar 

  51. Waggoner LE, Kang J, Zuidema JM, Vijayakumar S, Hurtado AA, Sailor MJ, et al. Porous silicon nanoparticles targeted to the extracellular matrix for therapeutic protein delivery in traumatic brain injury. Bioconjug Chem: ACS Publications; 2022.

    Book  Google Scholar 

  52. Sapino S, Ugazio E, Gastaldi L, Miletto I, Berlier G, Zonari D, et al. Mesoporous silica as topical nanocarriers for quercetin: characterization and in vitro studies. Eur J Pharm Biopharm Elsevier. 2015;89:116–25.

    Article  CAS  Google Scholar 

  53. Wang C, Sun L, Li Q, Li Z, Xu C, Zhang X, et al. Highly branched poly ($β$-amino ester) s with narrow molecular weight distribution: fractionation and gene transfection activity. Chinese Chem Lett: Elsevier; 2022.

  54. Kalhori P, Abbasi A, Malayeri MR, Shirazi MM. Impact of crude oil components on acid sludge formation during well acidizing. J Pet Sci Eng. Elsevier; 2022;110698.

  55. Foo SC, Yusoff FM, Ismail M, Basri M, Khong NMH, Chan KW, et al. Efficient solvent extraction of antioxidant-rich extract from a tropical diatom, Chaetoceros calcitrans (Paulsen) Takano 1968. Asian Pac J Trop Biomed Elsevier. 2015;5:834–40.

    Article  CAS  Google Scholar 

  56. Hajinajaf N, Rabbani Y, Mehrabadi A, Tavakoli O. Experimental and modeling assessment of large-scale cultivation of microalgae Nannochloropsis sp. PTCC 6016 to reach high efficiency lipid extraction. Int J Environ Sci Technol. Springer; 2022;19:5511–28.

  57. Šoltys M, Kovačík P, Dammer O, Beránek J, Štěpánek F. Effect of solvent selection on drug loading and amorphisation in mesoporous silica particles. Int J Pharm [Internet]. Elsevier; 2019;555:19–27. Available from: https://doi.org/10.1016/j.ijpharm.2018.10.075

  58. Amiri P, Behin J. Assessment of aqueous phase ozonation on aggregation of polyvinylpyrrolidone-capped silver nanoparticles. Environ Sci Pollut Res Springer. 2021;28:34838–51.

    Article  CAS  Google Scholar 

  59. Ibrahim AH, Smått JH, Govardhanam NP, Ibrahim HM, Ismael HR, Afouna MI, et al. Formulation and optimization of drug-loaded mesoporous silica nanoparticle-based tablets to improve the dissolution rate of the poorly water-soluble drug silymarin. Eur J Pharm Sci [Internet]. Elsevier; 2020;142:105103. Available from: https://doi.org/10.1016/j.ejps.2019.105103

  60. Kurakula M, Rao GSNK. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J Drug Deliv Sci Technol. Elsevier; 2020;60:102046.

  61. Liu Y, Chen X, Liu Y, Gao Y, Liu P. Electrospun coaxial fibers to optimize the release of poorly water-soluble drug. Polymers (Basel). MDPI; 2022;14:469.

  62. Lam S-M, Kee M-W, Sin J-C. Influence of PVP surfactant on the morphology and properties of ZnO micro/nanoflowers for dye mixtures and textile wastewater degradation. Mater Chem Phys Elsevier. 2018;212:35–43.

    Article  CAS  Google Scholar 

  63. Fjordbøge AS, Uthuppu B, Jakobsen MH, Fischer SV, Broholm MM. Mobility of electrostatically and sterically stabilized gold nanoparticles (AuNPs) in saturated porous media. Environ Sci Pollut Res Springer. 2019;26:29460–72.

    Article  Google Scholar 

  64. Wang Y-Y, Sun W-J, Lin H, Gao P-P, Gao J-F, Dai K, et al. Steric stabilizer-based promotion of uniform polyaniline shell for enhanced electromagnetic wave absorption of carbon nanotube/polyaniline hybrids. Compos Part B Eng. Elsevier; 2020;199:108309.

  65. Nnamani PO, Ugwu AA, Nnadi OH, Kenechukwu FC, Ofokansi KC, Attama AA, et al. Formulation and evaluation of transdermal nanogel for delivery of artemether. Drug Deliv Transl Res Springer. 2021;11:1655–74.

    Article  CAS  Google Scholar 

  66. Ibrahim AH, Ibrahim HM, Elbahwy IA, Afouna MI, Tagami T, Ozeki T. Lyophilized tablets of felodipine-loaded polymeric nanocapsules to enhance aqueous solubility: Formulation and optimization. J Drug Deliv Sci Technol. Elsevier; 2022;70:103172.

  67. Wilkhu JS, McNeil SE, Anderson DE, Kirchmeier M, Perrie Y. Development of a solid dosage platform for the oral delivery of bilayer vesicles. Eur J Pharm Sci [Internet]. Elsevier; 2017;108:71–7. Available from: http://dx.doi.org/https://doi.org/10.1016/j.ejps.2017.06.014

  68. Yang M, Xie S, Li Q, Wang Y, Chang X, Shan L, et al. Effects of polyvinylpyrrolidone both as a binder and pore-former on the release of sparingly water-soluble topiramate from ethylcellulose coated pellets. Int J Pharm Elsevier. 2014;465:187–96.

    Article  CAS  Google Scholar 

  69. Franco P, De Marco I. The use of poly (N-vinyl pyrrolidone) in the delivery of drugs: a review. Polymers (Basel). Multidisciplinary Digital Publishing Institute; 2020;12:1114.

  70. Cunha S, Costa CP, Loureiro JA, Alves J, Peixoto AF, Forbes B, et al. Double optimization of rivastigmine-loaded nanostructured lipid carriers (NLC) for nose-to-brain delivery using the quality by design (QbD) approach: formulation variables and instrumental parameters. Pharmaceutics. MDPI; 2020;12:599.

  71. Duralliu A, Matejtschuk P, Stickings P, Hassall L, Tierney R, Williams DR. The influence of moisture content and temperature on the long-term storage stability of freeze-dried high concentration immunoglobulin G (IgG). Pharmaceutics. MDPI; 2020;12:303.

  72. Muthurajan T, Rammanohar P, Rajendran NP, Sethuraman S, Krishnan UM. Evaluation of a quercetin–gadolinium complex as an efficient positive contrast enhancer for magnetic resonance imaging. RSC Adv Royal Society of Chemistry. 2015;5:86967–79.

    Article  CAS  Google Scholar 

  73. Stoyanova N, Spasova M, Manolova N, Rashkov I, Georgieva A, Toshkova R. Antioxidant and antitumor activities of novel quercetin-loaded electrospun cellulose acetate/polyethylene glycol fibrous materials. Antioxidants. MDPI; 2020;9:232.

  74. Vialpando M, Aerts A, Persoons J, Martens J, Van Den Mooter G. Evaluation of ordered mesoporous silica as a carrier for poorly soluble drugs: influence of pressure on the structure and drug release. J Pharm Sci Elsevier. 2011;100:3411–20.

    Article  CAS  Google Scholar 

  75. Wu C, Zhao Z, Zhao Y, Hao Y, Liu Y, Liu C. Preparation of a push–pull osmotic pump of felodipine solubilized by mesoporous silica nanoparticles with a core–shell structure. Int J Pharm Elsevier. 2014;475:298–305.

    Article  CAS  Google Scholar 

  76. Sethia S, Squillante E. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm Elsevier. 2004;272:1–10.

    Article  CAS  Google Scholar 

  77. Patel G V, Patel VB, Pathak A, Rajput SJ. Nanosuspension of efavirenz for improved oral bioavailability: formulation optimization, in vitro, in situ and in vivo evaluation. Drug Dev Ind Pharm. Taylor \& Francis; 2014;40:80–91.

  78. Panghal D, Nagpal M, Thakur GS, Arora S. Dissolution improvement of atorvastatin calcium using modified locust bean gum by the solid dispersion technique. Sci Pharm. 2014;82:177–91.

    Article  CAS  Google Scholar 

  79. Lappalainen M, Pitkänen I, Harjunen P. Quantification of low levels of amorphous content in sucrose by hyperDSC. Int J Pharm Elsevier. 2006;307:150–5.

    Article  CAS  Google Scholar 

  80. Huang J, Wang Q, Chu L, Xia Q. Liposome-chitosan hydrogel bead delivery system for the encapsulation of linseed oil and quercetin: preparation and in vitro characterization studies. Lwt. Elsevier; 2020;117:108615.

  81. Das B, De A, Das M, Das S, Samanta A. A new exploration of Dregea volubilis flowers: focusing on antioxidant and antidiabetic properties. South African J Bot Elsevier. 2017;109:16–24.

    Article  CAS  Google Scholar 

  82. Jiao J, Gai Q-Y, Yao L-P, Niu L-L, Zang Y-P, Fu Y-J. Ultraviolet radiation for flavonoid augmentation in Isatis tinctoria L. hairy root cultures mediated by oxidative stress and biosynthetic gene expression. Ind Crops Prod. Elsevier; 2018;118:347–54.

  83. Preeth DR, Saravanan S, Shairam M, Selvakumar N, Raja IS, Dhanasekaran A, et al. Bioactive Zinc (II) complex incorporated PCL/gelatin electrospun nanofiber enhanced bone tissue regeneration. Eur J Pharm Sci. Elsevier; 2021;160:105768.

  84. Arriagada F, Correa O, Günther G, Nonell S, Mura F, Olea-Azar C, et al. Morin flavonoid adsorbed on mesoporous silica, a novel antioxidant nanomaterial. PLoS One. Public Library of Science San Francisco, CA USA; 2016;11:e0164507.

  85. Sanei M, Mahdavian AR, Torabi S, Salehi-Mobarakeh H. Efficient modification of nanosilica particles in preparation of anti-scratch transparent polyacrylic films through miniemulsion polymerization. Polym Bull. Springer Berlin Heidelberg; 2017;74:1879–98.

  86. Ma X, Lin H, Zhang J, Zhou X, Han J, She Y, et al. Preparation and characterization of dummy molecularly imprinted polymers for separation and determination of farrerol from Rhododendron aganniphum using HPLC. Green Chem Lett Rev. 2018;11:513–22.

    Article  CAS  Google Scholar 

  87. Ghasemi-kasman M, Moalem-banhangi M, Ahmadian SR. Fabrication and evaluation of novel quercetin- conjugated Fe 3 O 4 – β -cyclodextrin nanoparticles for potential use in epilepsy disorder. Int J Nanomedicine. 2019;14:6481–95.

    Article  Google Scholar 

  88. Qi Y, Jiang M, Cui YL, Zhao L, Zhou X. Synthesis of quercetin loaded nanoparticles based on alginate for Pb(II) adsorption in aqueous solution. Nanoscale Res Lett [Internet]. Nanoscale Research Letters; 2015;10:1–9. Available from: http://dx.doi.org/https://doi.org/10.1186/s11671-015-1117-7

  89. Sritham E, Gunasekaran S. FTIR spectroscopic evaluation of sucrose-maltodextrin-sodium citrate bioglass. Food Hydrocoll Elsevier. 2017;70:371–82.

    Article  CAS  Google Scholar 

  90. Vickers NJ. Animal communication: when i’m calling you, will you answer too? Curr Biol Elsevier. 2017;27:R713–5.

    Article  CAS  Google Scholar 

  91. Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev Elsevier. 2006;58:1688–713.

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Deanship of Scientific Research at Jouf University under grant No (DSR-2021-01-03107).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the work, Abdulsalam M. Kassem and Mohamed F. Ibrahim; interpretation of data for the work, Abdulsalam M. Kassem and Mohammed Elmowafy; drafting the work, Abdulsalam M. Kassem and Nabil K. Alruwaili; revising the work critically for important intellectual content, Mohammed Elmowafy and Naveed Ahmad; final approval of the version to be published, Abdulsalam M. Kassem and Mohammed Elmowafy; and agreement to be accountable for all aspects of the work, Abdulsalam M. Kassem and Mohammed Elmowafy.

Corresponding author

Correspondence to Mohammed Elmowafy.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmowafy, M., Alruwaili, N.K., Ahmad, N. et al. Quercetin-Loaded Mesoporous Silica Nanoparticle–Based Lyophilized Tablets for Enhanced Physicochemical Features and Dissolution Rate: Formulation, Optimization, and In Vitro Evaluation. AAPS PharmSciTech 24, 6 (2023). https://doi.org/10.1208/s12249-022-02464-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02464-w

Keywords

Navigation