Skip to main content

Advertisement

Log in

Self-Assembled Structure of α-Isostearyl Glyceryl Ether Affects Skin Permeability—a Lamellar with 70-nm Spaces and L3 Phase Enhanced the Transdermal Delivery of a Hydrophilic Model Drug

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Self-assembled surfactant structures, such as liquid crystals, have the potential to enhance transdermal drug delivery. In the present study, the pseudo-ternary system of GET (composed of α-Isostearyl glyceryl ether (GEIS) and polysorbate 60)/1,3 butanediol (BG)/water) was shown to exhibit a complex phase diagram. Small- and wide-angle X-ray scattering (SWAXS) and freeze-fracture transmission electron microscopy (FF-TEM) revealed that GET6BG60 (6%GET/60%BG/34%Water) formed a lamellar phase with a repeated distance of approximately 72 nm. Such a long-repeated distance of the lamellar phase was unique in the surfactant system. Moreover, the various structures, such as multilamellar vesicles and branched-like layers, were observed, which suggested that they might be deformable. On the other hand, only core–shell particles were observed in GET6BG20, the core of which was an L3 phase. GET6BG20 and GET6BG60 significantly enhanced the skin permeation of the hydrophilic model drug, antipyrine (ANP) (log Ko/w, − 1.51). However, their permeation profiles were distinct. Liquid chromatography-tandem mass spectrometry revealed that epidermal accumulation of GEIS was significantly higher with GET6BG60 than GET6BG20 after 1.5 h of permeation, which might be attributed to differences in their deformable properties. Furthermore, GEIS was reported to affect intercellular lipids. Accumulated GEIS in the epidermis may have interacted with intercellular lipids and enhanced the transdermal delivery of ANP. The difference in the permeation profiles of ANP may be attributed to the penetration process of GEIS in the epidermis. This study suggests that GET6BG20 and GET6BG60 are unique carriers to enhance the permeation of hydrophilic drugs, such as ANP.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bos JD, Meinardi MMHM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9(3):165–9. https://doi.org/10.1034/j.1600-0625.2000.009003165.x.

    Article  CAS  PubMed  Google Scholar 

  2. Scheuplein RJ, Blank IH. Permeability of the skin. Physiol Rev. 1971;51(4):702–47.

    Article  CAS  PubMed  Google Scholar 

  3. Blank IH. Further observations on factors which influence the water content of the stratum corneum. J Invest Dermatol. 1953;21(4):259–71. https://doi.org/10.1038/jid.1953.100.

    Article  CAS  PubMed  Google Scholar 

  4. Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–77.

    Article  CAS  PubMed  Google Scholar 

  5. Kogan A, Garti N. Microemulsions as transdermal drug delivery vehicles. Adv Coll Interface Sci. 2006;123–126:369–85. https://doi.org/10.1016/j.cis.2006.05.014.

    Article  CAS  Google Scholar 

  6. Schreier H, Bouwstra J. Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J Control Release. 1994;30(1):1–15. https://doi.org/10.1016/0168-3659(94)90039-6.

    Article  CAS  Google Scholar 

  7. Benson HA. Elastic liposomes for topical and transdermal drug delivery. Methods Mol Biol. 2017;1522:107–17. https://doi.org/10.1007/978-1-4939-6591-5_9.

    Article  CAS  PubMed  Google Scholar 

  8. Barauskas J, Johnsson M, Tiberg F. Self-assembled lipid superstructures: beyond vesicles and liposomes. Nano Lett. 2005;5(8):1615–9. https://doi.org/10.1021/nl050678i.

    Article  CAS  PubMed  Google Scholar 

  9. Barauskas J, Misiunas A, Gunnarsson T, Tiberg F, Johnsson M. “Sponge” nanoparticle dispersions in aqueous mixtures of diglycerol monooleate, glycerol dioleate, and polysorbate 80. Langmuir : ACS J Surf Coll. 2006;22(14):6328–34. https://doi.org/10.1021/la060295f.

    Article  CAS  Google Scholar 

  10. Engström S, Wadsten-Hindrichsen P, Hernius B. Cubic, sponge, and lamellar phases in the glyceryl monooleyl ether−propylene glycol−water system. Langmuir : ACS J Surf Coll. 2007;23(20):10020–5. https://doi.org/10.1021/la701217b.

    Article  CAS  Google Scholar 

  11. Popescu G, Barauskas J, Nylander T, Tiberg F. Liquid crystalline phases and their dispersions in aqueous mixtures of glycerol monooleate and glyceryl monooleyl ether. Langmuir : ACS J Surf Coll. 2007;23(2):496–503. https://doi.org/10.1021/la062344u.

    Article  CAS  Google Scholar 

  12. Suzuki Y, Tsutsumi H. Emulsifying Characteristics of α-monoalkyl glyceryl ether. J Japan Oil Chem Soc. 1987;36(8):588–93. https://doi.org/10.5650/jos1956.36.588.

    Article  CAS  Google Scholar 

  13. Suzuki A, Yamaguchi T, Kawasaki K, Hase T, Tokimitsu I. Enhancing effect of α-monoisostearyl glyceryl ether on the percutaneous penetration of indomethacin through excised rat skin. Biol Pharm Bull. 2001;24(6):698–700. https://doi.org/10.1248/bpb.24.698.

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki A, Yamaguchi T, Kawasaki K, Hase T, Tokimitsu I. Alpha-monoisostearyl glyceryl ether enhances percutaneous penetration of indometacin in-vivo. J Pharm Pharmacol. 2002;54(12):1601–7. https://doi.org/10.1211/002235702342.

    Article  CAS  PubMed  Google Scholar 

  15. Alfons K, Engstrom S. Drug compatibility with the sponge phases formed in monoolein, water, and propylene glycol or poly(ethylene glycol). J Pharm Sci. 1998;87(12):1527–30. https://doi.org/10.1021/js980209z.

    Article  CAS  PubMed  Google Scholar 

  16. Uchida T, Yakumaru M, Nishioka K, Higashi Y, Sano T, Todo H, et al. Evaluation of a silicone membrane as an alternative to human skin for determining skin permeation parameters of chemical compounds. Chem Pharm Bull. 2016;64(9):1338–46. https://doi.org/10.1248/cpb.c16-00322.

    Article  CAS  Google Scholar 

  17. Morimoto Y, Hatanaka T, Sugibayashi K, Omiya H. Prediction of skin permeability of drugs: comparison of human and hairless rat skin. J Pharm Pharmacol. 1992;44(8):634–9. https://doi.org/10.1111/j.2042-7158.1992.tb05484.x.

    Article  CAS  PubMed  Google Scholar 

  18. Hatanaka T, Inuma M, Sugibayashi K, Morimoto Y. Prediction of skin permeability of drugs: I: comparison with artificial membrane. Chem Pharm Bull. 1990;38(12):3452–9. https://doi.org/10.1248/cpb.38.3452.

    Article  CAS  Google Scholar 

  19. Heuser J. Preparing biological samples for stereomicroscopy by the quick-freeze, deep-etch, rotary-replication technique. Methods Cell Biol. 1981;22:97–122. https://doi.org/10.1016/s0091-679x(08)61872-5.

    Article  CAS  PubMed  Google Scholar 

  20. Severs NJ. Freeze-fracture electron microscopy. Nat Protoc. 2007;2(3):547–76. https://doi.org/10.1038/nprot.2007.55.

    Article  CAS  PubMed  Google Scholar 

  21. Iikura H, Uchida K, Ogawa-Fuse C, Bito K, Naitou S, Hosokawa M, et al. Effects of temperature and humidity on the skin permeation of hydrophilic and hydrophobic drugs. AAPS PharmSciTech. 2019;20(7):264. https://doi.org/10.1208/s12249-019-1481-1.

    Article  CAS  PubMed  Google Scholar 

  22. Wester RC, Christoffel J, Hartway T, Poblete N, Maibach HI, Forsell J. Human cadaver skin viability for in vitro percutaneous absorption: storage and detrimental effects of heat-separation and freezing. Pharm Res. 1998;15(1):82–4. https://doi.org/10.1023/a:1011904921318.

    Article  CAS  PubMed  Google Scholar 

  23. Fushimi T, Uchino T, Miyazaki Y, Hatta I, Asano M, Fujino H, et al. Development of phospholipid nanoparticles encapsulating 3-O-cetyl ascorbic acid and tocopherol acetate (TA-Cassome) for improving their skin accumulation. Int J Pharm. 2018;548(1):192–205. https://doi.org/10.1016/j.ijpharm.2018.06.030.

    Article  CAS  PubMed  Google Scholar 

  24. Iliopoulos F, Sil BC, Monjur Al Hossain ASM, Moore DJ, Lucas RA, Lane ME. Topical delivery of niacinamide: Influence of neat solvents. Int J Pharm. 2020;579:119137.  https://doi.org/10.1016/j.ijpharm.2020.119137.

  25. Hoffmann H, Thunig C, Munkert U, Meyer HW, Richter W. From vesicles to the L3 (sponge) phase in alkyldimethylamine oxide/heptanol systems. Langmuir : ACS J Surf Coll. 1992;8(11):2629–38. https://doi.org/10.1021/la00047a011.

    Article  CAS  Google Scholar 

  26. Strey R, Jahn W, Porte G, Bassereau P. Freeze fracture electron microscopy of dilute lamellar and anomalous isotropic (L3) phases. Langmuir : ACS J Surf Coll. 1990;6(11):1635–9. https://doi.org/10.1021/la00101a003.

    Article  CAS  Google Scholar 

  27. Imura T, Ohta N, Inoue K, Yagi N, Negishi H, Yanagishita H, et al. Naturally engineered glycolipid biosurfactants leading to distinctive self-assembled structures. Chemistry. 2006;12(9):2434–40. https://doi.org/10.1002/chem.200501199.

    Article  CAS  PubMed  Google Scholar 

  28. Maldonado A, Ober R, Gulik-Krzywicki T, Urbach W, Langevin D. The sponge phase of a mixed surfactant system. J Colloid Interface Sci. 2007;308(2):485–90. https://doi.org/10.1016/j.jcis.2007.01.012.

    Article  CAS  PubMed  Google Scholar 

  29. Imura T, Hikosaka Y, Worakitkanchanakul W, Sakai H, Abe M, Konishi M, et al. Aqueous-phase behavior of natural glycolipid biosurfactant mannosylerythritol lipid A: sponge, cubic, and lamellar phases. Langmuir : ACS J Surf Coll. 2007;23(4):1659–63. https://doi.org/10.1021/la0620814.

    Article  CAS  Google Scholar 

  30. Fujii MY, Asakawa Y, Fukami T. Potential application of novel liquid crystal nanoparticles of isostearyl glyceryl ether for transdermal delivery of 4-biphenyl acetic acid. Int J Pharm. 2020;575:118935. https://doi.org/10.1016/j.ijpharm.2019.118935.

    Article  CAS  PubMed  Google Scholar 

  31. Uchino T, Kato S, Hatta I, Miyazaki Y, Suzuki T, Sasaki K, et al. Study on the drug permeation mechanism from flurbiprofen-loaded glyceryl monooleyl ether-based lyotropic liquid crystalline nanoparticles across the skin: Synchrotron X-ray diffraction and confocal laser scanning microscopy study. Int J Pharm. 2019;555:259–69. https://doi.org/10.1016/j.ijpharm.2018.11.031.

    Article  CAS  PubMed  Google Scholar 

  32. Hussain A, Singh S, Sharma D, Webster TJ, Shafaat K, Faruk A. Elastic liposomes as novel carriers: recent advances in drug delivery. Int J Nanomed. 2017;12:5087–108. https://doi.org/10.2147/ijn.S138267.

    Article  CAS  Google Scholar 

  33. El Maghraby GM, Barry BW, Williams AC. Liposomes and skin: From drug delivery to model membranes. Eur J Pharm Sci. 2008;34(4–5):203–22. https://doi.org/10.1016/j.ejps.2008.05.002.

    Article  CAS  PubMed  Google Scholar 

  34. Benson HA. Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv. 2006;3(6):727–37. https://doi.org/10.1517/17425247.3.6.727.

    Article  CAS  PubMed  Google Scholar 

  35. Opatha SAT, Titapiwatanakun V, Chutoprapat R. Transfersomes: a promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics. 2020;12(9). https://doi.org/10.3390/pharmaceutics12090855.

  36. Jiang T, Wang T, Li T, Ma Y, Shen S, He B, et al. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma. ACS Nano. 2018;12(10):9693–701. https://doi.org/10.1021/acsnano.8b03800.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Takeyuki Uchida (TIA EM-facility, AIST) for electron microscopy.

Author information

Authors and Affiliations

Authors

Contributions

Tomohiko Sano, Hiroaki Todo, and Kazunori Kawasaki substantially contributed to the study conceptualization.

Tomohiko Sano, Akie Okada, and Takuji Kume significantly contributed to data analysis and interpretation.

Tomohiko Sano, Hiroaki Todo, and Kazunori Kawasaki substantially contributed to the manuscript drafting.

Minoru Fukui supported and coordinated the conduct of this study.

Kenji Sugibayashi advised the interpretation of the results and supervised the study.

All authors reviewed the manuscript draft and revised it critically on intellectual content.

All authors approved the final version of the manuscript to be published.

Corresponding author

Correspondence to Tomohiko Sano.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 248 KB)

Supplementary file2 (PDF 311 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sano, T., Okada, A., Kawasaki, K. et al. Self-Assembled Structure of α-Isostearyl Glyceryl Ether Affects Skin Permeability—a Lamellar with 70-nm Spaces and L3 Phase Enhanced the Transdermal Delivery of a Hydrophilic Model Drug. AAPS PharmSciTech 23, 296 (2022). https://doi.org/10.1208/s12249-022-02452-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02452-0

Keywords

Navigation