Skip to main content

Advertisement

Log in

In Situ Forming Chitosan-Alginate Interpolymer Complex Bioplatform for Wound Healing and Regeneration

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Cytocompatibility, biocompatibility, and biodegradability are amongst the most desirable qualities of wound dressings and can be tuned during the bioplatform fabrication steps to enhance wound healing capabilities. A three-stepped approach (partial-crosslinking, freeze-drying, and pulverisation) was employed in fabricating a particulate, partially crosslinked (PC), and transferulic acid (TFA)-loaded chitosan-alginate (CS-Alg) interpolymer complex (IPC) with enhanced wound healing capabilities. The PC TFA-CS-Alg IPC bioplatform displayed fluid uptake of 3102% in 24 h and a stepwise degradation up to 53.5% in 14 days. The PC TFA-CS-Alg bioplatform was used as a bioactive delivery system with an encapsulation efficiency of 65.6%, bioactive loading of 9.4%, burst release of 58.27%, and a steady release of 1.91% per day. PC TFA-CS-Alg displayed a shift in cytocompatibility from slightly cytotoxic (60–90% cell viability) to nontoxic (> 90% cell viability) over a 72-h period in NIH-3T3 cells. The wound closure and histological evaluations of the lesions indicated better wound healing performance in lesions treated with PC TFA-CS-Alg and PC CS-Alg compared to those treated with the commercial product and the control. Application of the particulate bioplatform on the wound via sprinkles, the in situ hydrogel formation under fluid exposure, and the accelerated wound healing performances of the bioplatforms make it a good candidate for bioactive delivery system and skin tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sudarsan S, Franklin D, Guhanathan S. Imbibed salts and pH-responsive behaviours of sodium alginate based eco-friendly biopolymeric hydrogels—a solventless approach. Macromol Int J. 2015;11:24–9.

    CAS  Google Scholar 

  2. Yadav P, Yadav H, Shah VG, Shah G, Dhaka G. Biomedical biopolymers, their origin and evolution in biomedical sciences: a systematic review. J clin diagnos Res: JCDR. 2015;9(9):ZE21.

    CAS  Google Scholar 

  3. Van den Kerckhove E, Stappaerts K, Boeckx W, Van den Hof B, Monstrey S, Van der Kelen A, et al. Silicones in the rehabilitation of burns: a review and overview. Burns. 2001;27(3):205–14.

    Article  PubMed  Google Scholar 

  4. Aderibigbe B, Buyana B. Alginate in Wound Dressings. Pharmaceutics. 2018;10(2):42.

    Article  PubMed Central  Google Scholar 

  5. Disa JJ, Alizadeh K, Smith JW, Hu Q-y, Cordeiro PG. Evaluation of a combined calcium sodium alginate and bio-occlusive membrane dressing in the management of split-thickness skin graft donor sites. Ann Plastic Surg. 2001;46(4):405–8.

    Article  CAS  Google Scholar 

  6. Paul W, Sharma CP. Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs. 2004;18(1):18–23.

    Google Scholar 

  7. Il’ina A, Varlamov V, Ermakov YA, Orlov V, Skryabin K (2008) Chitosan is a natural polymer for constructing nanoparticles. Doklady Chemistry: Springer; 165–7.

  8. López-León T, Carvalho E, Seijo B, Ortega-Vinuesa J, Bastos-González D. Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior. J Colloid Interface Sci. 2005;283(2):344–51.

    Article  PubMed  Google Scholar 

  9. Lo H-H, Chung J. The effects of plant phenolics, caffeic acid, chlorogenic acid and ferulic acid on arylamine N-acetyltransferase activities in human gastrointestinal microflora. Anticancer Res. 1999;19(1A):133–9.

    CAS  PubMed  Google Scholar 

  10. Tsou M, Hung C, Lu H, Wu L, Chang S, Chang H, et al. Effects of caffeic acid, chlorogenic acid and ferulic acid on growth and arylamine N-acetyltransferase activity in Shigella sonnei (group D). Microbios. 2000;101(398):37–46.

    CAS  PubMed  Google Scholar 

  11. Borges A, Ferreira C, Saavedra MJ, Simoes M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb Drug Resist. 2013;19(4):256–65.

    Article  CAS  PubMed  Google Scholar 

  12. Hosoda A, Ozaki Y, Kashiwada A, Mutoh M, Wakabayashi K, Mizuno K, et al. Syntheses of ferulic acid derivatives and their suppressive effects on cyclooxygenase-2 promoter activity. Bioorg Med Chem. 2002;10(4):1189–96.

    Article  CAS  PubMed  Google Scholar 

  13. Nagasaka R, Chotimarkorn C, Shafiqul IM, Hori M, Ozaki H, Ushio H. Anti-inflammatory effects of hydroxycinnamic acid derivatives. Biochem Biophys Res Commun. 2007;358(2):615–9.

    Article  CAS  PubMed  Google Scholar 

  14. Batista R (2014) Uses and potential applications of ferulic acid. Ferulic acid: antioxidant properties, uses and potential health benefits 1st ed New York, NY: Nova Science Publishers, Inc 39–70.

  15. Smith MM, Hartley RD. Occurrence and nature of ferulic acid substitution of cell-wall polysaccharides in graminaceous plants. Carbohyd Res. 1983;118:65–80.

    Article  CAS  Google Scholar 

  16. Nair R, Reddy BH, Kumar CA, Kumar KJ. Application of chitosan microspheres as drug carriers: a review. J Pharm Sci Res. 2009;1(2):1.

    CAS  Google Scholar 

  17. Cota-Arriola O, Plascencia-Jatomea M, Lizardi-Mendoza J, Robles-Sánchez R, Ezquerra-Brauer J, Ruíz-García J, et al. Preparation of chitosan matrices with ferulic acid: physicochemical characterization and relationship on the growth of Aspergillus parasiticus. CyTA-Journal of Food. 2017;15(1):65–74.

    CAS  Google Scholar 

  18. Blüm C, Scheibel T. Control of drug loading and release properties of spider silk sub-microparticles. BioNanoScience. 2012;2(2):67–74.

    Article  Google Scholar 

  19. Jeong SH, Park K. Drug loading and release properties of ion-exchange resin complexes as a drug delivery matrix. Int J Pharm. 2008;361(1–2):26–32.

    Article  CAS  PubMed  Google Scholar 

  20. Madgulkar A, Bhalekar M, Swami M. In vitro and in vivo studies on chitosan beads of losartan duolite AP143 complex, optimized by using statistical experimental design. AAPS PharmSciTech. 2009;10(3):743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mndlovu H, du Toit LC, Kumar P, Marimuthu T, Kondiah PP, Choonara YE, et al. 2019 Development of a fluid-absorptive alginate-chitosan bioplatform for potential application as a wound dressing. Carbohydrate Polymers 114988.

  22. Zhang Y, Li Z, Zhang K, Yang G, Wang Z, Zhao J, et al. Ethyl oleate-containing nanostructured lipid carriers improve oral bioavailability of trans-ferulic acid ascompared with conventional solid lipid nanoparticles. Int J Pharm. 2016;511(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  23. Bairagi U, Mittal P, Singh J, Mishra B. Preparation, characterization, and in vivo evaluation of nano formulations of ferulic acid in diabetic wound healing. Drug Dev Ind Pharm. 2018;44(11):1783–96.

    Article  CAS  PubMed  Google Scholar 

  24. Rezaeiroshan A, Saeedi M, Morteza-Semnani K, Akbari J, Gahsemi M, Nokhodchi A (2020) Development of trans-Ferulic acid niosome: an optimization and an in-vivo study. Journal of Drug Delivery Science and Technology. 101854.

  25. Sakugawa K, Ikeda A, Takemura A, Ono H. Simplified method for estimation of composition of alginates by FTIR. J Appl Polym Sci. 2004;93(3):1372–7.

    Article  CAS  Google Scholar 

  26. Chandrasekaran AR, Jia CY, Theng CS, Muniandy T, Muralidharan S, Dhanaraj SA. Invitro studies and evaluation of metformin marketed tablets-Malaysia. J Appl Pharm Sci. 2011;1(5):214.

    Google Scholar 

  27. Mndlovu H, du Toit LC, Kumar P, Choonara YE, Marimuthu T, Kondiah PP, et al. Bioplatform fabrication approaches affecting chitosan-based interpolymer complex properties and performance as wound dressings. Molecules. 2020;25(1):222.

    Article  CAS  PubMed Central  Google Scholar 

  28. Müller R, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47(1):3–19.

    Article  PubMed  Google Scholar 

  29. Hussain F, Khurshid M, Masood R, Ibrahim W. Developing antimicrobial calcium alginate fibres from neem and papaya leaves extract. J Wound Care. 2017;26(12):778–83.

    Article  CAS  PubMed  Google Scholar 

  30. Du W-L, Xu Y-L, Xu Z-R, Fan C-L. Preparation, characterization and antibacterial properties against E. coli K88 of chitosan nanoparticle loaded copper ions. Nanotechnology. 2008;19(8):085707.

    Article  PubMed  Google Scholar 

  31. Du W-L, Niu S-S, Xu Y-L, Xu Z-R, Fan C-L. Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohyd Polym. 2009;75(3):385–9.

    Article  CAS  Google Scholar 

  32. Mathew S, Abraham TE. Physico-chemical characterization of starch ferulates of different degrees of substitution. Food Chem. 2007;105(2):579–89.

    Article  CAS  Google Scholar 

  33. Wang J, Cao Y, Sun B, Wang C. Characterisation of inclusion complex of trans-ferulic acid and hydroxypropyl-β-cyclodextrin. Food Chem. 2011;124(3):1069–75.

    Article  CAS  Google Scholar 

  34. Moura MJ, Figueiredo MM, Gil MH. Rheological study of genipin cross-linked chitosan hydrogels. Biomacromol. 2007;8(12):3823–9.

    Article  CAS  Google Scholar 

  35. Rochani A, Agrahari V, Chandra N, Singh ON, McCormick TJ, Doncel GF, et al. Development and preclinical investigation of physically cross-linked and ph-sensitive polymeric gels as potential vaginal contraceptives. Polymers. 2022;14(9):1728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kendall MA, Chong Y-F, Cock A. The mechanical properties of the skin epidermis in relation to targeted gene and drug delivery. Biomaterials. 2007;28(33):4968–77.

    Article  CAS  PubMed  Google Scholar 

  37. Pan GX, Thomson CI, Leary GJ. UV–vis. spectroscopic characteristics of ferulic acid and related compounds. J wood Chem Technol. 2002;22(2–3):137–46.

    Article  CAS  Google Scholar 

  38. Trombino S, Ferrarelli T, Cassano R. A New Pro-Prodrug Aminoacid-Based for Trans-Ferulic Acid and Silybin Intestinal Release. J Function Biomater. 2014;5(3):99–110.

    Article  Google Scholar 

  39. Dahl JE, Frangou-Polyzois MJ, Polyzois GL. In vitro biocompatibility of denture relining materials. Gerodontology. 2006;23(1):17–22.

    Article  PubMed  Google Scholar 

  40. Varela-Garcia A, Concheiro A, Alvarez-Lorenzo C. Cytosine-functionalized bioinspired hydrogels for ocular delivery of antioxidant transferulic acid. Biomater Sci. 2020;8(4):1171–80.

    Article  CAS  PubMed  Google Scholar 

  41. Jin SG, Kim KS, Kim DW, Kim DS, Seo YG, Go TG, et al. Development of a novel sodium fusidate-loaded triple polymer hydrogel wound dressing: mechanical properties and effects on wound repair. Int J Pharm. 2016;497(1–2):114–22.

    Article  CAS  PubMed  Google Scholar 

  42. Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, et al. Epithelialization in wound healing: a comprehensive review. Adv Wound Care. 2014;3(7):445–64.

    Article  Google Scholar 

  43. Nishiyama T, Amano S, Tsunenaga M, Kadoya K, Takeda A, Adachi E, et al. The importance of laminin 5 in the dermal–epidermal basement membrane. J Dermatol Sci. 2000;24:S51–9.

    Article  CAS  PubMed  Google Scholar 

  44. Velnar T, Gradisnik L. Tissue augmentation in wound healing: the role of endothelial and epithelial cells. Medical Archives. 2018;72(6):444.

    Article  PubMed  PubMed Central  Google Scholar 

  45. McDougall S, Dallon J, Sherratt J, Maini P. Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications. Philos Trans Royal Soc A: Math, Phys Eng Sci. 1843;2006(364):1385–405.

    Google Scholar 

  46. Coleman D, King R, Andrade J. The foreign body reaction: a chronic inflammatory response. J Biomed Mater Res. 1974;8(5):199–211.

    Article  CAS  PubMed  Google Scholar 

  47. Dale PD, Sherratt JA, Maini PK. A mathematical model for collagen fibre formation during foetal and adult dermal wound healing. Proc R Soc Lond B. 1996;263(1370):653–60.

    CAS  Google Scholar 

Download references

Acknowledgements

Professor Viness Pillay (1970-2020) is hereby kindly acknowledged and remembered for his contributions to the conceptualization of this work.

Funding

This work was supported by the National Research Foundation (NRF) of South Africa; the South African Medical Research Council (SAMRC); and the University of the Witwatersrand, Johannesburg.

Author information

Authors and Affiliations

Authors

Contributions

Hillary Mndlovu: data curation, formal analysis, methodology, roles/writing — original draft, writing — review & editing.

Pradeep Kumar: conceptualization, funding acquisition, investigation, methodology, supervision, validation, visualisation, writing — review & editing.

Lisa C. du Toit: data curation, formal analysis, investigation, methodology, supervision, validation, visualisation, writing — review & editing.

Yahya E. Choonara: conceptualization, funding acquisition, investigation, project administration, resources, supervision, validation, visualisation; writing — review & editing.

Corresponding author

Correspondence to Yahya E. Choonara.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mndlovu, H., Kumar, P., du Toit, L.C. et al. In Situ Forming Chitosan-Alginate Interpolymer Complex Bioplatform for Wound Healing and Regeneration. AAPS PharmSciTech 23, 247 (2022). https://doi.org/10.1208/s12249-022-02397-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02397-4

Keywords

Navigation