Skip to main content
Log in

Evaluation of EDTA Dianhydride Versus Diphenyl Carbonate Nanosponges for Curcumin

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Cyclodextrin-based nanosponges are widely investigated for several applications and are considered potential drug carriers. The method of nanosponges preparation involves the use of chemical cross-linking agents where the properties of Nanosponges can be affected. This study compared the resulting differences in the final nanosponges’ properties using carbonate and dianhydride crosslinkers. Diphenyl carbonate and EDTA dianhydride were used for the synthesis of nanosponges. Both types of nanosponges were loaded with curcumin as a model drug. Physicochemical characterizations, including PXRD, DSC, FTIR, scanning electron microscopy, AFM, particle size, zeta potential, and surface area analysis, were carried out for the prepared nanosponges. Curcumin release and drug content were also evaluated. Nanosponges prepared by Diphenyl carbonate crosslinker resulted in an amorphous form compared to crystalline EDTA-nanosponges. This study reported the successful inclusion and complexation of curcumin inside carbonate cross-linked cyclodextrin-based nanosponges and suggested the physical entrapment of crystalline curcumin in EDTA dianhydride. These findings were further investigated and supported by computational modeling.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Obaidat R, Al-Shar'i N, Tashtoush B, Athamneh T. Enhancement of levodopa stability when complexed with β-cyclodextrin in transdermal patches. Pharm Dev Technol. 2018;23(10):986–97. https://doi.org/10.1080/10837450.2016.1245319.

    Article  CAS  PubMed  Google Scholar 

  2. Silberberg M. Cyclodextrin as a drug carrier increasing drug solubility. Sci J Lander College Arts Sci. 2017;11(1):5.

    Google Scholar 

  3. Saokham P, Muankaew C, Jansook P, Loftsson T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules. 2018;23(5):1161.

    Article  PubMed Central  Google Scholar 

  4. Obaidat A, Obaidat R. Development and evaluation of fast-dissolving tablets of meloxicam-[beta]-cyclodextrin complex prepared by direct compression. Acta Pharma. 2011;61(1):83.

    Article  CAS  Google Scholar 

  5. Arya P, Raghav N. In-vitro studies of Curcumin-β-cyclodextrin inclusion complex as sustained release system. J Mol Struct. 2021;1228:129774.

    Article  CAS  Google Scholar 

  6. Sharma D, Satapathy BK. Fabrication of optimally controlled electrosprayed polymer-free nano-particles of curcumin/β-cyclodextrin inclusion complex. Colloids Surf A Physicochem Eng Asp. 2021;618:126504.

    Article  CAS  Google Scholar 

  7. Szente L, Szejtli J. Cyclodextrins as food ingredients. Trends Food Sci Technol. 2004;15(3–4):137–42.

    Article  CAS  Google Scholar 

  8. Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems 1998.

  9. Conceicao J, Adeoye O, Cabral-Marques HM, Lobo J. Cyclodextrins as drug carriers in pharmaceutical technology: the state of the art. Curr Pharm Des. 2018;24(13):1405–33.

    Article  CAS  PubMed  Google Scholar 

  10. Hoti G, Caldera F, Cecone C, Pedrazzo AR, Anceschi A, Appleton SL, et al. Effect of the cross-linking density on the swelling and rheological behavior of Ester-bridged β-Cyclodextrin Nanosponges. Materials. 2021;14(3):478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mashaqbeh H, Obaidat R, Al-Shar’i N. Evaluation and characterization of Curcumin-β-cyclodextrin and cyclodextrin-based nanosponge inclusion complexation. Polymers. 2021;13(23):4073.

  12. Concheiro A, Alvarez-Lorenzo C. Chemically cross-linked and grafted cyclodextrin hydrogels: from nanostructures to drug-eluting medical devices. Adv Drug Deliv Rev. 2013;65(9):1188–203.

    Article  CAS  PubMed  Google Scholar 

  13. Belenguer-Sapiña C, Pellicer-Castell E, Mauri-Aucejo AR, Simó-Alfonso EF, Amorós P. Cyclodextrins as a key piece in nanostructured materials: quantitation and remediation of pollutants. Nanomaterials. 2021;11(1):7.

    Article  Google Scholar 

  14. BelBruno JJ. Molecularly imprinted polymers. Chem Rev. 2018;119(1):94–119.

    Article  PubMed  Google Scholar 

  15. Utzeri G, Matias PM, Murtinho D. Valente AJ. Cyclodextrin-based nanosponges: Overview and opportunities. Frontiers in Chemistry; 2022. p. 10.

    Google Scholar 

  16. Bergal A, Andaç M. Nanosponges (NSs): using as a Nanocarrier for anti Cancer drug delivery applications. ACTA Pharmaceutica Sciencia 2021;59(2).

  17. Trotta F. Cyclodextrins in pharmaceutics, cosmetics, and biomedicine. Inc: John Wiley & Sons; 2011.

    Google Scholar 

  18. Sherje AP, Dravyakar BR, Kadam D, Jadhav M. Cyclodextrin-based nanosponges: a critical review. Carbohydr Polym. 2017;173:37–49.

    Article  CAS  PubMed  Google Scholar 

  19. Trotta F, Mele A. Nanosponges: synthesis and applications: John Wiley & Sons; 2019.

    Book  Google Scholar 

  20. Tejashri G, Amrita B, Darshana J. Cyclodextrin based nanosponges for pharmaceutical use: a review. Acta Pharma. 2013;63(3):335–58.

    Article  CAS  Google Scholar 

  21. Rousseau J, Menuel S, Rousseau C, Hapiot F, Monflier E. Cyclodextrins as porous material for catalysis. Organic Nanoreactors Elsevier. 2016:15–42.

  22. Trotta F. Cyclodextrin nanosponges and their applications. John Wiley & Sons, Inc.: New York, USA; 2011. p. 323–42.

  23. Caldera F, Tannous M, Cavalli R, Zanetti M, Trotta F. Evolution of cyclodextrin nanosponges. Int J Pharm. 2017;531(2):470–9.

    Article  CAS  PubMed  Google Scholar 

  24. Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem. 2012;8(1):2091–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bastiancich C, Scutera S, Alotto D, Cambieri I, Fumagalli M, Casarin S, et al. Cyclodextrin-based nanosponges as a nanotechnology strategy for imiquimod delivery in pathological scarring prevention and treatment. J Nanopharm Drug Del. 2014;2(4):311–24.

    Google Scholar 

  26. Tannous M, Caldera F, Hoti G, Dianzani U, Cavalli R, Trotta F. Drug-encapsulated Cyclodextrin Nanosponges. Supramolecules in Drug Discovery and Drug Delivery. 2021:247–83.

  27. Almagro EQ, Bosca AR, Bernd A, Zapata JP, Joaquin D, Mira DP, et al. Pharmacological activities of Curcuma longa extracts. U.S: Google Patents; 2007.

    Google Scholar 

  28. Yadav D, Yadav SK, Khar RK, Mujeeb M, Akhtar M. Turmeric (Curcuma longa L.): a promising spice for phytochemical and pharmacological activities. International Journal of Green Pharmacy (IJGP). 2013;7(2). https://doi.org/10.4103/0973-8258.116375.

  29. Abrahams S, Haylett WL, Johnson G, Carr JA, Bardien S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: a review. Neuroscience. 2019;406:1–21.

    Article  CAS  PubMed  Google Scholar 

  30. Edwards RL, Luis PB, Varuzza PV, Joseph AI, Presley SH, Chaturvedi R, et al. The anti-inflammatory activity of curcumin is mediated by its oxidative metabolites. J Biol Chem. 2017;292(52):21243–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng D, Huang C, Huang H, Zhao Y, Khan MRU, Zhao H, et al. Antibacterial mechanism of Curcumin: a review. Chem Biodivers. 2020;17(8):e2000171.

    Article  CAS  PubMed  Google Scholar 

  32. Huang L, Chen C, Zhang X, Li X, Chen Z, Yang C, et al. Neuroprotective effect of curcumin against cerebral ischemia-reperfusion via mediating autophagy and inflammation. J Mol Neurosci. 2018;64(1):129–39.

    Article  CAS  PubMed  Google Scholar 

  33. Mathew D, Hsu W-L. Antiviral potential of curcumin. J Funct Foods. 2018;40:692–9.

    Article  CAS  Google Scholar 

  34. Siviero A, Gallo E, Maggini V, Gori L, Mugelli A, Firenzuoli F, et al. Curcumin, a golden spice with a low bioavailability. J Herbal Med. 2015;5(2):57–70.

    Article  Google Scholar 

  35. Gharakhloo M, Sadjadi S, Rezaeetabar M, Askari F, Rahimi A. Cyclodextrin-based Nanosponges for improving solubility and sustainable release of Curcumin. ChemistrySelect. 2020;5(5):1734–8.

    Article  CAS  Google Scholar 

  36. Allahyari S, Valizadeh H, Roshangar L, Mahmoudian M, Trotta F, Caldera F, et al. Preparation and characterization of cyclodextrin nanosponges for bortezomib delivery. Expert Opin Drug Del. 2020.

  37. Varan C, Anceschi A, Sevli S, Bruni N, Giraudo L, Bilgiç E, et al. Preparation and characterization of Cyclodextrin Nanosponges for organic toxic molecule removal. Int J Pharm. 2020;119485.

  38. BIOVIA DS. Discovery studio San Diego: Dassault Systèmes2020.

  39. Raffaini G, Ganazzoli F, Mele A, Castiglione F. A molecular dynamics study of cyclodextrin nanosponge models. J Incl Phenom Macrocycl Chem. 2013;75(3):263–8. https://doi.org/10.1007/s10847-012-0126-8.

    Article  CAS  Google Scholar 

  40. Raffaini G, Ganazzoli F. Understanding surface interaction and inclusion complexes between Piroxicam and native or Crosslinked β-Cyclodextrins: the role of drug concentration. Molecules. 2020;25(12):2848.

    Article  CAS  PubMed Central  Google Scholar 

  41. Van Gunsteren WF, Berendsen HJC. A leap-frog algorithm for stochastic dynamics. Mol Simul. 1988;1(3):173–85. https://doi.org/10.1080/08927028808080941.

    Article  Google Scholar 

  42. Ryckaert J-P, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 1977;23(3):327–41. https://doi.org/10.1016/0021-9991(77)90098-5.

    Article  CAS  Google Scholar 

  43. Singh PK, Wani K, Kaul-Ghanekar R, Prabhune A, Ogale S. From micron to nano-curcumin by sophorolipid co-processing: highly enhanced bioavailability, fluorescence, and anti-cancer efficacy. RSC Adv. 2014;4(104):60334–41.

    Article  CAS  Google Scholar 

  44. Sanphui P, Goud NR, Khandavilli UR, Bhanoth S, Nangia A. New polymorphs of curcumin. Chem Commun. 2011;47(17):5013–5.

    Article  CAS  Google Scholar 

  45. Chen J, Qin X, Zhong S, Chen S, Su W, Liu Y. Characterization of curcumin/cyclodextrin polymer inclusion complex and investigation on its antioxidant and antiproliferative activities. Molecules. 2018;23(5):1179.

    Article  PubMed Central  Google Scholar 

  46. Ismail E, Sabry D, Mahdy H, Khalil M. Synthesis and characterization of some ternary metal complexes of Curcumin with 1, 10-phenanthroline and their anticancer applications. J Sci Res. 2014;6(3):509–19.

    Article  Google Scholar 

  47. Kolev TM, Velcheva EA, Stamboliyska BA, Spiteller M. DFT and experimental studies of the structure and vibrational spectra of curcumin. Int J Quantum Chem. 2005;102(6):1069–79.

    Article  CAS  Google Scholar 

  48. Rachmawati H, Edityaningrum CA, Mauludin R. Molecular inclusion complex of curcumin–β-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel. AAPS PharmSciTech. 2013;14(4):1303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu X, Li W, Xuan G. Preparation and characterization of β-Cyclodextrin Nanosponges and study on enhancing the solubility of insoluble Nicosulfuron. IOP Conference Series: Materials Science and Engineering: IOP Publishing; 2020. p. 012108.

  50. Nabih Maria D, R Mishra S, Wang L, Helmy Abd-Elgawad A-E, Abd-Elazeem Soliman O, Salah El-Dahan M, et al. Water-soluble complex of curcumin with cyclodextrins: enhanced physical properties for ocular drug delivery. Current drug delivery 2017;14(6):875–886.

  51. Kasapoglu-Calik M, Ozdemir M. Synthesis and controlled release of curcumin-β-cyclodextrin inclusion complex from nanocomposite poly (N-isopropylacrylamide/sodium alginate) hydrogels. J Appl Polym Sci. 2019;136(21):47554.

    Article  Google Scholar 

  52. Pushpalatha R, Selvamuthukumar S, Kilimozhi D. Cross-linked, cyclodextrin-based nanosponges for curcumin delivery-physicochemical characterization, drug release, stability and cytotoxicity. J Drug Del Sci Technol. 2018;45:45–53.

    Article  CAS  Google Scholar 

  53. Singh V, Xu J, Wu L, Liu B, Guo T, Guo Z, et al. Ordered and disordered cyclodextrin nanosponges with diverse physicochemical properties. RSC Adv. 2017;7(38):23759–64.

    Article  CAS  Google Scholar 

  54. Krabicová I, Appleton SL, Tannous M, Hoti G, Caldera F, Rubin Pedrazzo A, et al. History of Cyclodextrin Nanosponges Polymers. 2020;12(5):1122.

    Google Scholar 

  55. Darandale S, Vavia P. Cyclodextrin-based nanosponges of curcumin: formulation and physicochemical characterization. J Incl Phenom Macrocycl Chem. 2013;75(3–4):315–22.

    Article  CAS  Google Scholar 

  56. Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, et al. CHARMM: the biomolecular simulation program. J Comput Chem. 2009;30(10):1545–614. https://doi.org/10.1002/jcc.21287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem. 1983;4(2):187–217. https://doi.org/10.1002/jcc.540040211.

    Article  CAS  Google Scholar 

  58. Gholibegloo E, Mortezazadeh T, Salehian F, Ramazani A, Amanlou M, Khoobi M. Improved curcumin loading, release, solubility and toxicity by tuning the molar ratio of cross-linker to β-cyclodextrin. Carbohydr Polym. 2019;213:70–8.

    Article  CAS  PubMed  Google Scholar 

  59. Zhao F, Repo E, Yin D, Meng Y, Jafari S, Sillanpää M. EDTA-cross-linked β-cyclodextrin: an environmentally friendly bifunctional adsorbent for simultaneous adsorption of metals and cationic dyes. Environ Sci Technol. 2015;49(17):10570–80.

    Article  CAS  PubMed  Google Scholar 

  60. Liu H, Cai X, Wang Y, Chen J. Adsorption mechanism-based screening of cyclodextrin polymers for adsorption and separation of pesticides from water. Water Res. 2011;45(11):3499–511.

    Article  CAS  PubMed  Google Scholar 

  61. Zhao F, Repo E, Yin D, Chen L, Kalliola S, Tang J, et al. One-pot synthesis of trifunctional chitosan-EDTA-β-cyclodextrin polymer for simultaneous removal of metals and organic micropollutants. Sci Rep. 2017;7(1):1–14.

    Google Scholar 

  62. Kumar S, Rao R. Analytical tools for cyclodextrin nanosponges in pharmaceutical field: a review. J Incl Phenom Macrocycl Chem. 2019;94(1):11–30.

    Article  CAS  Google Scholar 

  63. Varan C, Anceschi A, Sevli S, Bruni N, Giraudo L, Bilgic E, et al. Preparation and characterization of cyclodextrin nanosponges for organic toxic molecule removal. Int J Pharm. 2020;585:119485.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors acknowledge the Deanship of Research at Jordan University of Science and Technology for funding this project with Fund number 312/2021.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization RO and HM, Supervision and project administration RO, Conduct the experimental work HM, Methodology HM and NA, Write the first draft HM and NA, Writing/editing RO, HM and NA, Data analysis RO, HM and NA, Computational investigations and software analysis NA.

Corresponding author

Correspondence to Rana Obaidat.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Figure S1

PXRD pattern of raw cyclodextrin. (PNG 274 kb)

High resolution (TIF 86 kb)

Figure S2

FTIR spectra of raw β-cyclodextrin polymer, Plain EDTA Dianhydride cross-linked nanosponge, and plain DPC cross-linked nanosponge. (PNG 788 kb)

High resolution (TIF 1316 kb)

βCD-DPC NS model. Color codes: C in grey, O in red, and H in white. Hydrogen bond donor (magenta) and acceptor (green). (AVI 26534 kb)

βCD-EDTA NS model. Color codes: C in grey, O in red, and H in white. Hydrogen bond donor (magenta) and acceptor (green). (AVI 12649 kb)

Curcumin inclusion complex in βCD-DPC NS animation (WEBM 5157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashaqbeh, H., Obaidat, R. & Al-shar’i, N.A. Evaluation of EDTA Dianhydride Versus Diphenyl Carbonate Nanosponges for Curcumin. AAPS PharmSciTech 23, 229 (2022). https://doi.org/10.1208/s12249-022-02372-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02372-z

Keywords

Navigation