Skip to main content

Advertisement

Log in

The Molecular Mechanism of Propylene Glycol Monocaprylate on Skin Retention: Probing the Dual Roles on the Molecular Mobility and Collagen Connection in Roflumilast Cream

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The present work was to construct a roflumilast (ROF) cream for the treatment of psoriasis and clarify the dual roles of propylene glycol monocaprylate (PGM) in both molecular mobility of the cream, and drug-skin miscibility via drug-PGM-ceramide and drug-PGM-collagen intermolecular interaction. The cream formulation was screened through the stability study and in vitro skin administration study, optimized by Plackett–Burman and Box-Behnken design, and finally verified by the in vivo tissue distribution study. PGM demonstrated a significant drug skin retention enhancement effect (Rmax in vivo = 19.5 μg/g). It increased the molecular mobility of the oil phase of the cream by decreasing the molecular interaction of oil molecules proven by the rheology study (Ec = 3.73 × 10−4 mJ·m−3). More importantly, because of the good stratum corneum (SC) compatibility (∆H =  − 403.88 J/g), PGM promoted an orderly flow of SC lipids (X-ray scattering, ΔLPP = 1.18 nm) and entered the viable epidermis/dermis (VE/DE) in large quantities (RPGM = 1186 μg/g), acting as a bridge to connect the drug to collagen through two H-bonds (LengthH-bond = 2.846 Å and 3.313 Å), thus increasing the miscibility of drug and VE/DE significantly (∆H =  − 310.10 J/g, Emix = 21.66 kcal/mol). In this study, a ROF cream was developed successfully and the effect of PGM on the skin retention was clarified at molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Caon T, Campos CE, Simões CM, Silva MA. Novel perspectives in the tuberculosis treatment: administration of isoniazid through the skin. Int J Pharm. 2015;494(1):463–70.

    Article  CAS  Google Scholar 

  2. Ge S, Lin Y, Lu H, et al. Percutaneous delivery of econazole using microemulsion as vehicle: formulation, evaluation and vesicle-skin interaction. Int J Pharm. 2014;465(1–2):120–31.

    Article  CAS  Google Scholar 

  3. Carvajal-Vidal P, Mallandrich M, García ML, Calpena AC. Effect of different skin penetration promoters in halobetasol propionate permeation and retention in human skin. Int J Mol Sci. 2017;18(11):2475.

    Article  Google Scholar 

  4. Subedi S, Gong Y, Chen Y, Shi Y. Infliximab and biosimilar infliximab in psoriasis: efficacy, loss of efficacy, and adverse events. Drug Des Devel Ther. 2019;13:2491–502.

    Article  CAS  Google Scholar 

  5. Gisondi P, Bellinato F, Girolomoni G. Topographic differential diagnosis of chronic plaque psoriasis: challenges and tricks. J Clin Med. 2020;9(11):3594.

    Article  Google Scholar 

  6. Milakovic M, Gooderham MJ. Phosphodiesterase-4 inhibition in psoriasis. Psoriasis (Auckl). 2021;11:21–9.

    Google Scholar 

  7. Matencio A, Hernández-García S, García-Carmona F, López-Nicolás JM. A way to increase the bioaccesibility and photostability of roflumilast, a COPD treatment, by cyclodextrin monomers. Polymers (Basel). 2019;11(5):801.

    Article  CAS  Google Scholar 

  8. Mika D, Bobin P, Pomérance M, et al. Differential regulation of cardiac excitation-contraction coupling by cAMP phosphodiesterase subtypes. Cardiovasc Res. 2013;100(2):336–46.

    Article  CAS  Google Scholar 

  9. Jyothi SL, Krishna KL, Shirin VKA, et al. Drug delivery systems for the treatment of psoriasis: current status and prospects. Journal of Drug Delivery Science and Technology. 2021;62: 102364.

    Article  CAS  Google Scholar 

  10. Kaur S, Jain S, Sodhi HB, Rastogi A. Kamlesh. Optic nerve hypoplasia Oman J Ophthalmol. 2013;6(2):77–82.

    Article  Google Scholar 

  11. Sabale V, Kunjwani H, Sabale P. Formulation and in vitro evaluation of the topical antiageing preparation of the fruit of Benincasa hispida. J Ayurveda Integr Med. 2011;2(3):124–8.

    Article  Google Scholar 

  12. Davies DJ, Ward RJ, Heylings JR. Multi-species assessment of electrical resistance as a skin integrity marker for in vitro percutaneous absorption studies. Toxicol In Vitro. 2004;18(3):351–8.

    Article  CAS  Google Scholar 

  13. Song W, Quan P, Li S, et al. Probing the role of chemical enhancers in facilitating drug release from patches: mechanistic insights based on FT-IR spectroscopy, molecular modeling and thermal analysis. J Control Release. 2016;227:13–22.

    Article  CAS  Google Scholar 

  14. Kamal NS, Krishnaiah YSR, Xu X, et al. Identification of critical formulation parameters affecting the in vitro release, permeation, and rheological properties of the acyclovir topical cream [published correction appears in Int J Pharm. 2021 Jul 15;604:120787]. Int J Pharm. 2020;590:119914.

  15. Zhang S, Liu C, Yang D, et al. Mechanism insight on drug skin delivery from polyurethane hydrogels: roles of molecular mobility and intermolecular interaction. Eur J Pharm Sci. 2021;161: 105783.

    Article  CAS  Google Scholar 

  16. Praça FSG, Medina WSG, Eloy JO, et al. Evaluation of critical parameters for in vitro skin permeation and penetration studies using animal skin models. Eur J Pharm Sci. 2018;111:121–32.

    Article  Google Scholar 

  17. Aben S, Holtze C, Tadros T, Schurtenberger P. Rheological investigations on the creaming of depletion-flocculated emulsions. Langmuir. 2012;28(21):7967–75.

    Article  CAS  Google Scholar 

  18. Horita D, Hatta I, Yoshimoto M, Kitao Y, Todo H, Sugibayashi K. Molecular mechanisms of action of different concentrations of ethanol in water on ordered structures of intercellular lipids and soft keratin in the stratum corneum. Biochim Biophys Acta. 2015;1848(5):1196–202.

    Article  CAS  Google Scholar 

  19. Zhang Y, Liu C, Xu W, et al. An investigation on percutaneous permeation of flurbiprofen enantiomers: the role of molecular interaction between drug and skin components. Int J Pharm. 2021;601: 120503.

    Article  CAS  Google Scholar 

  20. Zeng C, Feng S. Optimized extraction of polysaccharides from bergeniaemeiensis rhizome, their antioxidant ability and protection of cells from acrylamide-induced cell death. Plants (Basel). 2020;9(8):976.

    Article  CAS  Google Scholar 

  21. Siska B, Snejdrova E, Machac I, Dolecek P, Martiska J. Contribution to the rheological testing of pharmaceutical semisolids. Pharm Dev Technol. 2019;24(1):80–8.

    Article  CAS  Google Scholar 

  22. Cócera M, Rodríguez G, Rubio L, et al. Characterisation of skin states by non-crystalline diffraction. Soft Matter. 2011;7(18):8605–11.

    Article  Google Scholar 

  23. Tang R, Samouillan V, Dandurand J, et al. Identification of ageing biomarkers in human dermis biopsies by thermal analysis (DSC) combined with Fourier transform infrared spectroscopy (FTIR/ATR). Skin Res Technol. 2017;23(4):573–80.

    Article  CAS  Google Scholar 

  24. Van Duzee BF. Thermal analysis of human stratum corneum. J Invest Dermatol. 1975;65(4):404–8.

    Article  Google Scholar 

  25. Defraeye T, Bahrami F, Ding L, Malini RI, Terrier A, Rossi RM. Predicting transdermal fentanyl delivery using mechanistic simulations for tailored therapy. Front Pharmacol. 2020;11: 585393.

    Article  CAS  Google Scholar 

  26. Ukai H, Iwasa K, Deguchi T, Morishita M, Katsumi H, Yamamoto A. Enhanced intestinal absorption of insulin by Capryol 90, a novel absorption enhancer in rats: implications in oral insulin delivery. Pharmaceutics. 2020;12(5):462.

    Article  CAS  Google Scholar 

  27. Gref R, Deloménie C, Maksimenko A, et al. Vitamin C-squalene bioconjugate promotes epidermal thickening and collagen production in human skin. Sci Rep. 2020;10(1):16883.

    Article  CAS  Google Scholar 

  28. Yang D, Wan X, Quan P, Liu C, Fang L. The role of carboxyl group of pressure sensitive adhesive in controlled release of propranolol in transdermal patch: quantitative determination of ionic interaction and molecular mechanism characterization. Eur J Pharm Sci. 2018;115:330–8.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Liaoning Province Science and Technology Plan Project (No: 2020JH2/10300075).

Author information

Authors and Affiliations

Authors

Contributions

Yuxue Liu: methodology, investigation, formal analysis, data curation, writing original draft. Chao Liu: supervision, writing, review, editing. Wenxuan Jia: resources. Wenwen Xu: investigation, formal analysis. Peng Quan: investigation, formal analysis, validation. Liang Fang: conceptualization, resources, project administration, funding acquisition.

Corresponding author

Correspondence to Liang Fang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, C., Jia, W. et al. The Molecular Mechanism of Propylene Glycol Monocaprylate on Skin Retention: Probing the Dual Roles on the Molecular Mobility and Collagen Connection in Roflumilast Cream. AAPS PharmSciTech 23, 136 (2022). https://doi.org/10.1208/s12249-022-02284-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02284-y

KEY WORDS

Navigation