Skip to main content

Advertisement

Log in

Geniposide-Loaded Liposomes for Brain Targeting: Development, Evaluation, and In Vivo Studies

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Geniposide (GE) possesses excellent neuroprotective effects but with poor brain targeting and short half-life. Liposome was considered to have great potential for brain diseases. Therefore, this research aimed to develop a geniposide liposome (GE-LP) as a brain delivery system for cerebral ischemia reperfusion injury (CIRI) therapy and evaluate its characterization, pharmacokinetics, brain targeting, and neuroprotective effects in vivo. Then, a reverse-phase evaporation method was applied to develop the GE-LP and optimize the formulation. Notably, the GE-LP had suitable size, which was 223.8 nm. Subsequently, the pharmacokinetic behavior of GE solution and GE-LP in mice plasma was investigated, and the brain targeting was also researched. The results showed that GE in plasma of GE-LP displayed three folds longer distribution half-life and a higher bioavailability and brain targeting compared to GE solution. In vivo neuroprotective effects was evaluated through the middle cerebral artery occlusion (MCAO) rat model, and GE-LP exhibited a stronger tendency in preventing the injury of CIRI, which can significantly improve neurological deficits. Overall, this study demonstrates GE-LP as a new formulation with ease of preparation, sustained release, and high brain targeting, which has significant development prospects on CIRI; this is expected to improve the efficacy of GE and reduce the frequency of administration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

GE:

geniposide

GE-LP:

geniposide liposome

PA:

paeoniflorin

MCAO:

middle cerebral artery occlusion

CIRI:

cerebral ischemia reperfusion injury

NCS:

nerve center system

TCM:

traditional Chinese medicine

BBB:

blood-brain barrier

BBD:

Response Surface Box-Behnken design

TEM:

transmission electron microscopy

PDI:

polydispersity Index

EE:

entrapment efficiency

DL:

drug loading

DAD:

diode array detector

CCA:

common carotid artery

ICA:

internal carotid artery

ECA:

external carotid artery

References

  1. Irfani F, Fithrie A, Rambe SA. Association between working memory impairment and activities of daily living in post-stroke patients. Med Glas. 2020;17(2):433–8. https://doi.org/10.17392/1135-20.

    Article  Google Scholar 

  2. Collaborators, G.B.D.L.R.o.S, Feigin VL, Nguyen G, Cercy K, Johnson CO, Alam T, et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N Engl J Med. 2018;379(25):2429–37. https://doi.org/10.1056/NEJMoa1804492.

    Article  Google Scholar 

  3. Shah R, Wilkins E, Nichols M, Kelly P, El-Sadi F, Wright FL, et al. Epidemiology report: trends in sex-specific cerebrovascular disease mortality in Europe based on WHO mortality data. Eur Heart J. 2019;40(9):755–64. https://doi.org/10.1093/eurheartj/ehy378.

    Article  PubMed  Google Scholar 

  4. Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008;371(9624):1612–23. https://doi.org/10.1016/S0140-6736(08)60694-7.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang WF, Jin YC, Li XM, Yang Z, Wang D, Cui JJ. Protective effects of leptin against cerebral ischemia/reperfusion injury. Exp Ther Med. 2019;17(5):3282–90. https://doi.org/10.3892/etm.2019.7377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakano T, Shigeta K, Ota T, Amano T, Ueda M, Matsumaru Y, et al. Efficacy and safety of mechanical thrombectomy for occlusion of the second segment of the middle cerebral artery: retrospective analysis of the Tama-REgistry of Acute endovascular Thrombectomy (TREAT). Clin Neuroradiol. 2020;30(3):481–7. https://doi.org/10.1007/s00062-019-00810-3.

    Article  PubMed  Google Scholar 

  7. Serrone JC, Jimenez L, Ringer AJ. The role of endovascular therapy in the treatment of acute ischemic stroke. Neurosurgery. 2014;74(Suppl 1):S133–41. https://doi.org/10.1227/NEU.0000000000000224.

    Article  PubMed  Google Scholar 

  8. Datta A, Sarmah D, Mounica L, Kaur H, Kesharwani R, Verma G, et al. Cell death pathways in ischemic stroke and targeted pharmacotherapy. Transl Stroke Res. 2020;11(6):1185–202. https://doi.org/10.1007/s12975-020-00806-z.

    Article  PubMed  Google Scholar 

  9. Zhang Y, Shan Z, Zhao Y, Ai Y. Sevoflurane prevents miR-181a-induced cerebral ischemia/reperfusion injury. Chem Biol Interact. 2019;308:332–8. https://doi.org/10.1016/j.cbi.2019.06.008.

    Article  CAS  PubMed  Google Scholar 

  10. Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res. 2009;335(1):75–96. https://doi.org/10.1007/s00441-008-0658-9.

    Article  PubMed  Google Scholar 

  11. Li N, Feng L, Tan Y, Xiang Y, Zhang R, Yang M. Preparation, characterization, pharmacokinetics and biodistribution of baicalin-loaded liposome on cerebral ischemia-reperfusion after i.v. administration in rats. Molecules. 2018;23(7):1747. https://doi.org/10.3390/molecules23071747.

    Article  CAS  PubMed Central  Google Scholar 

  12. Che X, Wang M, Wang T, Fan H, Yang M, Wang W, et al. Evaluation of the antidepressant activity, hepatotoxicity and blood brain barrier permeability of methyl genipin. Molecules. 2016;21(7):923. https://doi.org/10.3390/molecules21070923.

    Article  CAS  PubMed Central  Google Scholar 

  13. Li H, Wang J, Wang P, Zhang Y, Liu J, Yu Y, et al. Gene Expression profiling confirms the dosage-dependent additive neuroprotective effects of jasminoidin in a mouse model of ischemia-reperfusion injury. Biomed Res Int. 2018;2785636:1–11. https://doi.org/10.1155/2018/2785636.

    Article  CAS  Google Scholar 

  14. Habtemariam S, Lentini G. Plant-derived anticancer agents: lessons from the pharmacology of geniposide and its aglycone, genipin. Biomedicines. 2018;6(2):39. https://doi.org/10.3390/biomedicines6020039.

    Article  CAS  PubMed Central  Google Scholar 

  15. Lu Y, Du SY, Chen XL, Wu Q, Song X, Xu B, et al. Enhancing effect of natural borneol on the absorption of geniposide in rat via intranasal administration. J Zhejiang Univ Sci B. 2011;12(2):143–8. https://doi.org/10.1631/jzus.B1000121.

  16. Teixeira MI, Lopes CM, Amaral MH, Costa PC. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur J Pharm Biopharm. 2020;149:192–217. https://doi.org/10.1016/j.ejpb.2020.01.005.

    Article  CAS  PubMed  Google Scholar 

  17. Ishii T, Fukuta T, Agato Y, Oyama D, Yasuda N, Shimizu K, et al. Nanoparticles accumulate in ischemic core and penumbra region even when cerebral perfusion is reduced. Biochem Biophys Res Commun. 2013;430(4):1201–5. https://doi.org/10.1016/j.bbrc.2012.12.080.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Liu S, Wan J, Yang Q, Xiang Y, Ni L, et al. Preparation, characterization and in vivo study of borneol-baicalin-liposomes for treatment of cerebral ischemia-reperfusion injury. Int J Nanomedicine. 2020;15:5977–89. https://doi.org/10.2147/IJN.S259938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao Y, Xin Z, Li N, Chang S, Chen Y, Geng L, et al. Nano-liposomes of lycopene reduces ischemic brain damage in rodents by regulating iron metabolism. Free Radic Biol Med. 2018;124:1–11. https://doi.org/10.1016/j.freeradbiomed.2018.05.082.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang J, Han X, Li X, Luo Y, Zhao H, Yang M, et al. Core-shell hybrid liposomal vesicles loaded with panax notoginsenoside: preparation, characterization and protective effects on global cerebral ischemia/reperfusion injury and acute myocardial ischemia in rats. Int J Nanomedicine. 2012;7:4299–310. https://doi.org/10.2147/IJN.S32385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang Z, Wang X, Zhang D, Liu Y, Li L. Geniposide-mediated protection against amyloid deposition and behavioral impairment correlates with downregulation of mTOR signaling and enhanced autophagy in a mouse model of Alzheimer's disease. Aging. 2019;11(2):536–48. https://doi.org/10.18632/aging.101759.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zou T, Sugimoto K, Zhang J, Liu Y, Zhang Y, Liang H, et al. Geniposide alleviates oxidative stress of mice with depression-like behaviors by upregulating six3os1. Front Cell Dev Biol. 2020;8:553728. https://doi.org/10.3389/fcell.2020.553728.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fu C, Zhang X, Lu Y, Wang F, Xu Z, Liu S, et al. Geniposide inhibits NLRP3 inflammasome activation via autophagy in BV-2 microglial cells exposed to oxygen-glucose deprivation/reoxygenation. Int Immunopharmacol. 2020;84:106547. https://doi.org/10.1016/j.intimp.2020.106547.

    Article  CAS  PubMed  Google Scholar 

  24. Wang PQ, Liu Q, Xu WJ, Yu YN, Zhang YY, Li B, et al. Pure mechanistic analysis of additive neuroprotective effects between baicalin and jasminoidin in ischemic stroke mice. Acta Pharmacol Sin. 2018;39(6):961–74. https://doi.org/10.1038/aps.2017.145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Petullo D, Masonic K, Lincoln C, Wibberley L, Teliska M, Yao DL. Model development and behavioral assessment of focal cerebral ischemia in rats. Life Sci. 1999;64(13):1099–108. https://doi.org/10.1016/s0024-3205(99)00038-7.

    Article  CAS  PubMed  Google Scholar 

  26. Szoka F Jr, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A. 1978;75(9):4194–8. https://doi.org/10.1073/pnas.75.9.4194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu J, Zhang W, Wang D, Li S, Wu W. Preparation and characterization of norcantharidin liposomes modified with stearyl glycyrrhetinate. Exp Ther Med. 2018;16(3):1639–46. https://doi.org/10.3892/etm.2018.6416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mehrabi M, Esmaeilpour P, Akbarzadeh A, Saffari Z, Farahnak M, Farhangi A, et al. Efficacy of pegylated liposomal etoposide nanoparticles on breast cancer cell lines. Turk J Med Sci. 2016;46(2):567–71. https://doi.org/10.3906/sag-1412-67.

    Article  CAS  PubMed  Google Scholar 

  29. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84–91. https://doi.org/10.1161/01.str.20.1.84.

    Article  CAS  PubMed  Google Scholar 

  30. Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm. 2021;601:120571. https://doi.org/10.1016/j.ijpharm.2021.120571.

    Article  CAS  PubMed  Google Scholar 

  31. Sun QX, Shao W, Huang GH. Selection of liposome preparation method. Chin Tradit Pat Med. 2010;32(8):1397–401. https://doi.org/10.1002/jcc.21424.

    Article  CAS  Google Scholar 

  32. Maherani B, Arab-Tehrany E, Mozafari MR, Gaiani C, Linder M. Liposomes: a review of manufacturing techniques and targeting strategies. Curr. Nanosci. 2011;7:436–52. https://doi.org/10.2174/157341311795542453.

    Article  CAS  Google Scholar 

  33. Wagner A, Vorauer-Uhl K. Liposome technology for industrial purposes. J. Drug Deliv. 2011;2011:1–9. https://doi.org/10.1155/2011/591325.

    Article  CAS  Google Scholar 

  34. Craparo EF, Bondì ML, Pitarresi G, Cavallaro G. Nanoparticulate systems for drug delivery and targeting to the central nervous system. CNS Neurosci Ther. 2011;17(6):670–7. https://doi.org/10.1111/j.1755-5949.2010.00199.x.

    Article  CAS  PubMed  Google Scholar 

  35. Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008;69(1):1–9. https://doi.org/10.1016/j.ejpb.2007.08.001.

    Article  CAS  PubMed  Google Scholar 

  36. Ghaferi M, Asadollahzadeh MJ, Akbarzadeh A, Ebrahimi Shahmabadi H, Alavi SE. Enhanced efficacy of pegylated liposomal cisplatin: in vitro and in vivo evaluation. Int J Mol Sci. 2020;21(2):559. https://doi.org/10.3390/ijms21020559.

    Article  CAS  PubMed Central  Google Scholar 

  37. Nageeb El-Helaly S, Abd Elbary A, Kassem MA, El-Nabarawi MA. Electrosteric stealth Rivastigmine loaded liposomes for brain targeting: preparation, characterization, ex vivo, bio-distribution and in vivo pharmacokinetic studies. Drug delivery. 2017;24(1):692–700. https://doi.org/10.1080/10717544.2017.1309476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bothe HW, Bosma HJ, Hofer H, Hossmann KA, Angermeier WF. Selective vulnerability of hippocampus and disturbances of memory storage after mild unilateral ischemia of gerbil brain. Stroke. 1986;17(6):1160–3. https://doi.org/10.1161/01.str.17.6.1160.

    Article  CAS  PubMed  Google Scholar 

  39. Wang F, Cao J, Hao J, Liu K. Pharmacokinetics, bioavailability and tissue distribution of geniposide following intravenous and peroral administration to rats. Biopharm Drug Dispos. 2014;35(2):97–103. https://doi.org/10.1002/bdd.1869.

    Article  CAS  PubMed  Google Scholar 

  40. Yang Y, Lv Y, Shen C, Shi T, He H, Qi J, et al. In vivo dissolution of poorly water-soluble drugs: Proof of concept based on fluorescence bioimaging. Acta Pharm Sin B. 2021;11(4):1056–68. https://doi.org/10.1016/j.apsb.2020.08.002.

    Article  CAS  PubMed  Google Scholar 

  41. Dong XP, Ruan M, Yu B, Jin L, Zhu DQ, Fang TH. Effects of borneol at different doses on concentration of geniposide in rat brains. Chinese Traditional and Herbal Drugs. 2012;43(7):1366–70 CNKI:SUN:ZCYO.0.2012-07-033.

    CAS  Google Scholar 

  42. Wen R, Zhang Q, Xu P, Bai J, Li P, Du S, et al. Xingnaojing mPEG2000-PLA modified microemulsion for transnasal delivery: pharmacokinetic and brain-targeting evaluation. Drug Dev Ind Pharm. 2016;42(6):926–35. https://doi.org/10.3109/03639045.2015.1091471.

    Article  CAS  PubMed  Google Scholar 

  43. Gallardo-Toledo E, Tapia-Arellano A, Celis F, Sinai T, Campos M, Kogan MJ, et al. Intranasal administration of gold nanoparticles designed to target the central nervous system: fabrication and comparison between nanospheres and nanoprisms. Int J Pharm. 2020;590:119957. https://doi.org/10.1016/j.ijpharm.2020.119957.

    Article  CAS  PubMed  Google Scholar 

  44. Waterhouse DN, Sutherland BW, Santos ND, Masin D, Osooly M, Strutt D, et al. Irinophore C™, a lipid nanoparticle formulation of irinotecan, abrogates the gastrointestinal effects of irinotecan in a rat model of clinical toxicities. Invest New Drugs. 2014;32(6):1071–82. https://doi.org/10.1007/s10637-014-0138-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu H, He L, Nie S, Guan J, Zhang X, Yang X, et al. Optimized preparation of vinpocetine proliposomes by a novel method and in vivo evaluation of its pharmacokinetics in New Zealand rabbits. J Control Release. 2009;140(1):61–8. https://doi.org/10.1016/j.jconrel.2009.07.014.

    Article  CAS  PubMed  Google Scholar 

  46. Sonkar R, Sonali, Jha A, Viswanadh MK, Burande AS, Narendra, et al. Gold liposomes for brain-targeted drug delivery: formulation and brain distribution kinetics. Mater Sci Eng C Mater Biol Appl. 2021;120:111652. https://doi.org/10.1016/j.msec.2020.111652.

    Article  CAS  PubMed  Google Scholar 

  47. Ma C, Wang X, Xu T, Zhang S, Liu S, Zhai C, et al. An integrative pharmacology-based analysis of refined qingkailing injection against cerebral ischemic stroke: a novel combination of baicalin, geniposide, cholic acid, and hyodeoxycholic acid. Front Pharmacol. 2020;11:519. https://doi.org/10.3389/fphar.2020.00519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Long Y, Yang Q, Xiang Y, Zhang Y, Wan J, Liu S, et al. Nose to brain drug delivery - a promising strategy for active components from herbal medicine for treating cerebral ischemia reperfusion. Pharmacol Res. 2020;159:104795. https://doi.org/10.1016/j.phrs.2020.104795.

    Article  CAS  PubMed  Google Scholar 

  49. Lu Y, Du S, Bai J, Li P, Wen R, Zhao X. Bioavailability and brain-targeting of geniposide in gardenia-borneol co-compound by different administration routes in mice. Int J Mol Sci. 2012;13(11):14127–35. https://doi.org/10.3390/ijms131114127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China, No: 81673615; the Sichuan Human Resources and Social Security Bureau, No: 00809503; the Xinglin Scholar Discipline Promotion Talent Program of Chengdu University of Traditional Chinese Medicine, No: XGZX2010; the Key Laboratory of Modern Chinese Medicine Preparation of Ministry of Education of Jiangxi University of Traditional Chinese Medicine, No: TCM-201908, and the National College Student Innovation and Entrepreneurship Training Program, No: S202010633055.

Author information

Authors and Affiliations

Authors

Contributions

Jinyan Wan, Nan Li, and Songyu Liu have substantial contributions to the conception or design of the work and the acquisition, analysis, or interpretation of data for the work; Jinyan Wan, Yu Long, and Yulu Zhang drafted the work and revised it critically for important intellectual content; Yan Xiang, Dan Li, Ai Shi, Yu Shuang, Yanan He, and Ying Li also revised it and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved; Jinyan Wan, Nan Li, and Yongmei Guan finally approved the version to be published.

Corresponding authors

Correspondence to Nan Li or Yongmei Guan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests. The authors alone are responsible for the content and writing of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, J., Long, Y., Liu, S. et al. Geniposide-Loaded Liposomes for Brain Targeting: Development, Evaluation, and In Vivo Studies. AAPS PharmSciTech 22, 222 (2021). https://doi.org/10.1208/s12249-021-02093-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02093-9

KEY WORDS

Navigation