Skip to main content

Advertisement

Log in

Development of Gelucire® 48/16 and TPGS Mixed Micelles and Its Pellet Formulation by Extrusion Spheronization Technique for Dissolution Rate Enhancement of Curcumin

  • Research Article
  • Theme: Formulation and Delivery of Natural Products
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The oral bioavailability of curcumin is limited, attributed to its low solubility or dissolution and poor absorption. Herein, the study describes formulation of curcumin-loaded mixed micelles of Gelucire® 48/16 and TPGS for its dissolution rate enhancement. Curcumin was dispersed in these molten lipidic surfactants which was then adsorbed on carrier and formulated as pellets by extrusion spheronization. Critical micelle concentration (CMC) of binary mixture of Gelucire® 48/16 and TPGS was lower than their individual CMC demonstrating the synergistic behavior of mixture. Thermodynamic parameters like partition coefficient and Gibbs free energy of solubilization indicated that mixed micelles were more efficient than micelles of its individual components in curcumin solubilization. Dynamic light scattering (DLS) suggested slight increase in micellar size of mixed micelles than its components suggesting curcumin loading in mixed micelles. Fourier transform infrared spectroscopy (FTIR) revealed that phenolic hydroxyl group interacts with lipids which contribute to its enhanced solubility. Furthermore, the differential scanning calorimetry (DSC) and X-ray diffraction (XRD) study indicated the conversion of crystalline curcumin into amorphous form. In the pellet formulation, Gelucire® 48/16 acted as a binder and eliminated the requirement of additional binder. Microcrystalline cellulose (MCC) forms wet mass and retards the release of curcumin from pellets. Increase in concentration of water-soluble diluent increased drug release. The optimized formulation released more than 90% drug and maintains supersaturation level of curcumin for 2 h. Thus, mixed micellar system was effective delivery system for curcumin while pellet formulation is an interesting formulation strategy consisting semi-solid lipids.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhao L, Du J, Duan Y, Zang Y, Zhang H, Yang C, et al. Curcumin loaded mixed micelles composed of Pluronic P123 and F68: preparation, optimization and in vitro characterization. Colloids Surf B: Biointerfaces. 2012;97:101–8. https://doi.org/10.1016/j.colsurfb.2012.04.017.

    Article  CAS  PubMed  Google Scholar 

  2. Shen L, Ji H. The pharmacology of curcumin : is it the degradation products ? Trends Mol Med. 2012;18(3):138–44. https://doi.org/10.1016/j.molmed.2012.01.004.

    Article  CAS  PubMed  Google Scholar 

  3. Banez MJ, Geluz MI, Chandra A, Hamdan T, Biswas OS, Bryan NS, et al. A systemic review on the antioxidant and anti- inflammatory effects of resveratrol, curcumin, and dietary nitric oxide supplementation on human cardiovascular health. Nutr Res. 2020;78:11–26. https://doi.org/10.1016/j.nutres.2020.03.002.

    Article  CAS  PubMed  Google Scholar 

  4. Mathew D, Hsu W. Antiviral potential of curcumin. J Funct Foods. 2018;40:692–9. https://doi.org/10.1016/j.jff.2017.12.017.

    Article  CAS  Google Scholar 

  5. Aditya NP, Chimote G, Gunalan K, Banerjee R, Patankar S, Madhusudhan B. Curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice. Exp Parasitol. 2012;131(3):292–9. https://doi.org/10.1016/j.exppara.2012.04.010.

    Article  CAS  PubMed  Google Scholar 

  6. Changtam C, De Koning HP, Ibrahim H, Sajid MS, Gould MK, Suksamrarn A. Curcuminoid analogs with potent activity against Trypanosoma and Leishmania species. Eur J Med Chem. 2010;45(3):941–56. https://doi.org/10.1016/j.ejmech.2009.11.035.

    Article  CAS  PubMed  Google Scholar 

  7. Sun J, Chen F, Braun C, Zhou Y-Q, Rittner H, Tian Y-K, et al. Role of curcumin in the management of pathological pain. Phytomedicine. 2018;48:129–40. https://doi.org/10.1016/j.phymed.2018.04.045.

    Article  CAS  PubMed  Google Scholar 

  8. Priebe W, Jasi UT, Lewandowski W. Curcumin as tyrosine kinase inhibitor in cancer treatment. Eur J Med Chem. 2019;181:111512. https://doi.org/10.1016/j.ejmech.2019.07.015.

    Article  CAS  PubMed  Google Scholar 

  9. Li H, Sureda A, Devkota HP, Pittalà V, Barreca D, Silva AS, et al. Curcumin, the golden spice in treating cardiovascular diseases. Biotechnol Adv. 2019;38:107343. https://doi.org/10.1016/j.biotechadv.2019.01.010.

    Article  CAS  PubMed  Google Scholar 

  10. Amalraj A, Jude S, Varma K, Jacob J, Gopi S, Oluwafemi OS, et al. Preparation of a novel bioavailable curcuminoid formulation (CureitTM) using Polar-Nonpolar-Sandwich (PNS) technology and its characterization and applications. Mater Sci Eng C. 2017;75:359–67. https://doi.org/10.1016/j.msec.2017.02.068.

    Article  CAS  Google Scholar 

  11. Kakkar V, Kaur IP. Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural , biochemical and histopathological alterations in mice brain. Food Chem Toxicol. 2011;49(11):2906–13. https://doi.org/10.1016/j.fct.2011.08.006.

    Article  CAS  PubMed  Google Scholar 

  12. Kim T, Davis J, Zhang AJ, He X, Mathews ST. Curcumin activates AMPK and suppresses gluconeogenic gene expression in hepatoma cells. Biochem Biophys Res Commun. 2009;388(2):377–82. https://doi.org/10.1016/j.bbrc.2009.08.018.

    Article  CAS  PubMed  Google Scholar 

  13. Parsamanesh N, Moossavi M, Bahrami A, Butler AE, Sahebkar A. Therapeutic potential of curcumin in diabetic complications. Pharmacol Res. 2018;136:181–93. https://doi.org/10.1016/j.phrs.2018.09.012.

    Article  CAS  PubMed  Google Scholar 

  14. Ma Z, Na W, He H, Tang X. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. J Control Release. 2019;316:359–80. https://doi.org/10.1016/j.jconrel.2019.10.053.

    Article  CAS  PubMed  Google Scholar 

  15. Sadeghi F, Ashofteh M, Homayouni A, Abbaspour M, Nokhodchi A, Garekani HA. Antisolvent precipitation technique: A very promising approach to crystallize curcumin in presence of polyvinyl pyrrolidon for solubility and dissolution enhancement. Colloids Surf B: Biointerfaces. 2016;147:258–64. https://doi.org/10.1016/j.colsurfb.2016.08.004.

    Article  CAS  PubMed  Google Scholar 

  16. Ipar VS, Dsouza A, Devarajan PV. Enhancing curcumin oral bioavailability through nanoformulations. Eur J Drug Metab Pharmacokinet. 2019;44(4):459–80. https://doi.org/10.1007/s13318-019-00545-z.

    Article  CAS  PubMed  Google Scholar 

  17. Williams HD, Trevaskis NL, Yeap YY, Anby MU, Pouton CW, Porter CJH Lipid-based formulations and drug supersaturation : harnessing the unique benefits of the lipid digestion/absorption pathway. 2013;30(12):2976-2992. https://doi.org/10.1007/s11095-013-1126-0.

  18. Gelucire® family. https://www.pharmaexcipients.com/news/the-gelucire-family-semi-solid-excipients-by-gattefosse/. Accessed 30 Dec 2020.

  19. Liu RUI, Liu Z, Zhang C, Zhang B. Gelucire44 / 14 as a novel absorption enhancer for drugs with different hydrophilicities : in vitro and in vivo improvement on transcorneal permeation. J Pharm Sci. 2011;100(8):3186–95. https://doi.org/10.1002/jps.22540.

    Article  CAS  PubMed  Google Scholar 

  20. Mitsutake H, Neves MDG, Rutledge DN, Poppi RJ, Breitkreitz MC. Extraction of information about structural changes in a semisolid pharmaceutical formulation from near-infrared and Raman images by multivariate curve resolution–alternating least squares and ComDim. J Chemom. 2020;34(12):1–16. https://doi.org/10.1002/cem.3288.

    Article  CAS  Google Scholar 

  21. Gattefossé. Oral Drug Delivery with lipid Excipients. https://www.gattefosse.com/pharmaceuticals-content/lipid-based-drug-delivery-systems. Accessed 30 Dec 2020.

  22. Gelucire® 48/16 Pellets. Solubility and oral bioavailability enhancement. https://www.pharmaexcipients.com/wp-content/uploads/2020/03/Gelucire-48-16_solubility-and-bioavailability-enhancer-from-Gattefosse.pdf. Accessed 30 Dec 2020.

  23. Xua S, Dai WG. Drug precipitation inhibitors in supersaturable formulations. Int J Pharm. 2013;453(1):36–43. https://doi.org/10.1016/j.ijpharm.2013.05.013.

    Article  CAS  Google Scholar 

  24. Feng D, Peng T, Huang Z, Singh V, Shi Y, Wen T, et al. Polymer–surfactant system based amorphous solid dispersion: Precipitation inhibition and bioavailability enhancement of itraconazole. Pharmaceutics. 2018;10(2):1–15. https://doi.org/10.3390/pharmaceutics10020053.

    Article  CAS  Google Scholar 

  25. Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98:2549–72. https://doi.org/10.1002/jps.21650.

    Article  CAS  PubMed  Google Scholar 

  26. Chaudhari SP, Dugar RP. Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs Smruti. J Drug Deliv Sci Technol. 2017;41:68–77. https://doi.org/10.1016/j.jddst.2017.06.010.

    Article  CAS  Google Scholar 

  27. Gao Y, Li LB, Zhai G. Preparation and characterization of Pluronic/TPGS mixed micelles for solubilization of camptothecin. Colloids Surf B: Biointerfaces. 2008;64(2):194–9. https://doi.org/10.1016/j.colsurfb.2008.01.021.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Z, Tan S, Feng SS. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials. 2012;33(19):4889–906. https://doi.org/10.1016/j.biomaterials.2012.03.046.

    Article  CAS  PubMed  Google Scholar 

  29. Sobczyński J, Chudzik-Rząd B. Mixed micelles as drug delivery nanocarriers. Design and Development of New Nanocarriers. 2018. 331–364 p.

  30. Duan Y, Zhang B, Chu L, Tong HHY, Liu W, Zhai G. Evaluation in vitro and in vivo of curcumin-loaded mPEG-PLA/TPGS mixed micelles for oral administration. Colloids Surf B: Biointerfaces. 2016;141:345–54. https://doi.org/10.1016/j.colsurfb.2016.01.017.

    Article  CAS  PubMed  Google Scholar 

  31. Parikh A, Kathawala K, Song Y, Zhou XF, Garg S. Curcumin-loaded self-nanomicellizing solid dispersion system: part I: development, optimization, characterization, and oral bioavailability. Drug Deliv Transl Res. 2018;8(5):1389–405. https://doi.org/10.1007/s13346-018-0543-3.

    Article  CAS  PubMed  Google Scholar 

  32. Wei T, Manickam S. Response Surface Methodology, an an effective strategy in the optimization of the generation of curcumin-loaded micelles. Asia Pac J Chem Eng. 2012;7:S125–33.

    Article  CAS  Google Scholar 

  33. Zhao L, Du J, Duan Y, Zang Y, Zhang H, Yang C, et al. Curcumin loaded mixed micelles composed of Pluronic P123 and F68: preparation, optimization and in vitro characterization. Colloids Surf B: Biointerfaces. 2012;97:101–8. https://doi.org/10.1016/j.colsurfb.2012.04.017.

    Article  CAS  PubMed  Google Scholar 

  34. Patil S, Choudhary B, Rathore A, Roy K, Mahadik K. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells. Phytomedicine. 2015;22(12):1103–11. https://doi.org/10.1016/j.phymed.2015.08.006.

    Article  CAS  PubMed  Google Scholar 

  35. Jaiswal M, Kumar M, Pathak K. Zero order delivery of itraconazole via polymeric micelles incorporated in situ ocular gel for the management of fungal keratitis. Colloids Surf B: Biointerfaces. 2015;130:23–30. https://doi.org/10.1016/j.colsurfb.2015.03.059.

    Article  CAS  PubMed  Google Scholar 

  36. Pokharkar V, Suryawanshi S, Dhapte-Pawar V. Exploring micellar-based polymeric systems for effective nose-to-brain drug delivery as potential neurotherapeutics. Drug Deliv Transl Res. 2020;10(4):1019–31. https://doi.org/10.1007/s13346-019-00702-6.

    Article  CAS  PubMed  Google Scholar 

  37. Singla P, Singh O, Chabba S, Aswal VK, Mahajan RK. Sodium deoxycholate mediated enhanced solubilization and stability of hydrophobic drug Clozapine in pluronic micelles. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2018;191:143–54. https://doi.org/10.1016/j.saa.2017.10.015.

    Article  CAS  Google Scholar 

  38. Singla P, Chabba S, Mahajan RK. A systematic physicochemical investigation on solubilization and in vitro release of poorly water soluble oxcarbazepine drug in pluronic micelles. Colloids Surfaces A Physicochem Eng Asp. 2016;504:479–88. https://doi.org/10.1016/j.colsurfa.2016.05.043.

    Article  CAS  Google Scholar 

  39. Parekh P, Singh K, Marangoni DG, Bahadur P. Micellization and solubilization of a model hydrophobic drug nimesulide in aqueous salt solutions of Tetronic® T904. Colloids Surf B: Biointerfaces. 2011;83(1):69–77. https://doi.org/10.1016/j.colsurfb.2010.10.046.

    Article  CAS  PubMed  Google Scholar 

  40. Anitha A, Deepagan VG, Divya Rani VV, Menon D, Nair SV, Jayakumar R. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate-chitosan nanoparticles. Carbohydr Polym. 2011;84(3):1158–64. https://doi.org/10.1016/j.carbpol.2011.01.005.

    Article  CAS  Google Scholar 

  41. Mailafiya MM, Abubakar K, Danmaigoro A, Chiroma SM, Rahim EBA, Moklas MAM, et al. Evaluation of in vitro release kinetics and mechanisms of curcumin-loaded cockle shell-derived calcium carbonate nanoparticles. Biomed Res Ther. 2019;6(12):3518–40. https://doi.org/10.15419/bmrat.v6i12.580.

    Article  Google Scholar 

  42. Nasser B, Aldosari A. Development and evaluation of self-nanoemulsifying drug delivery systems for oral delivery of indomethacin. 2018. https://www.researchgate.net/publication/331465365_Development_and_evaluation_of_self-nanoemulsifying_drug_delivery_systems_for_oral_delivery_of_indomethacin. Accessed 5 Nov 2020.

  43. Kaur V, Goyal AK, Ghosh G, Chandra S, Rath G. Development and characterization of pellets for targeted delivery of 5-fluorouracil and phytic acid for treatment of colon cancer in Wistar rat. Heliyon. 2020;6:e03125. https://doi.org/10.1016/j.heliyon.2019.e03125.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Goyanes A, Souto C, Martínez-pacheco R. Co-processed MCC-EudragitÒ E excipients for extrusion–spheronization. Eur J Pharm Biopharm. 2011;79:658–63. https://doi.org/10.1016/jejpb.2011.07.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the University Grants Commission (UGC), New Delhi, for providing fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purnima D. Amin.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Guest Editors: Harsh Chauhan, Abhijit Date and Sonali Dhindwal

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinde, U.K., Suryawanshi, D.G. & Amin, P.D. Development of Gelucire® 48/16 and TPGS Mixed Micelles and Its Pellet Formulation by Extrusion Spheronization Technique for Dissolution Rate Enhancement of Curcumin. AAPS PharmSciTech 22, 182 (2021). https://doi.org/10.1208/s12249-021-02032-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02032-8

KEY WORDS

Navigation