Skip to main content

Advertisement

Log in

Experimental Solubility, Thermodynamic/Computational Validations, and GastroPlus-Based In Silico Prediction for Subcutaneous Delivery of Rifampicin

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

We focused to explore a suitable solvent for rifampicin (RIF) recommended for subcutaneous (sub-Q) delivery [ethylene glycol (EG), propylene glycol (PG), tween 20, polyethylene glycol-400 (PEG400), oleic acid (OA), N-methyl-2-pyrrolidone (NMP), cremophor-EL (CEL), ethyl oleate (EO), methanol, and glycerol] followed by computational validations and in-silico prediction using GastroPlus. The experimental solubility was conducted over temperature ranges T = 298.2–318.2 K) and fixed pressure (p = 0.1 MPa) followed by validation employing computational models (Apelblat, and vanʼt Hoff). Moreover, the HSPiP solubility software provided the Hansen solubility parameters. At T = 318.2K, the estimated maximum solubility (in term of mole fraction) values of the drug were in order of NMP (11.9 × 10-2) ˃ methanol (6.8 × 10-2) ˃ PEG400 (4.8 × 10-2) ˃ tween 20 (3.4 × 10-2). The drug dissolution was endothermic process and entropy driven as evident from “apparent thermodynamic analysis”. The activity coefficients confirmed facilitated RIF–NMP interactions for increased solubility among them. Eventually, GastroPlus predicted the impact of critical input parameters on major pharmacokinetics responses after sub-Q delivery as compared to oral delivery. Thus, NMP may be the best solvent for sub-Q delivery of RIF to treat skin tuberculosis (local and systemic) and cutaneous related disease at explored concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

RIF:

rifampicin

OA:

oleic acid

EO:

ethyl oleate

PG:

propylene glycol

EG:

ethylene glycol

RMSD:

root mean square deviation

CEL:

cremophor-EL

PEG400:

polyethylene glycol 400

UPLC:

ultra performance liquid chromatography

DSC:

differential scanning calorimeter

References

  1. Wehrli W. Rifampin: Mechanisms of action and resistance, reviews of infectious diseases. Rev Infect Dis. 1983;5(3):S407–11.

    Article  CAS  Google Scholar 

  2. Hussain A, Altamimi MA, Alshehri S, Imam SS, Shakeel F, Singh SK. Novel approach for transdermal delivery of rifampicin to induce synergistic antimycobacterial effects against cutaneous and systemic tuberculosis using a cationic nanoemulsion gel. Int J Nanomedicine. 2020;15:1073–94.

    Article  CAS  Google Scholar 

  3. Thakur BK, Verma S, Hazarika DA. Clinicopathological study of cutaneous tuberculosis at Dibrugarh district, Assam. Indian J Dermatol. 2012;57:63–5.

    Article  Google Scholar 

  4. Begum K, Shahid MS, Jalil R. Topical nanoemulsion of rifampicin with benzoic acid and salicylic acid: activity against staphylococcus aureus, stap. epidermis and candida albicans, Bangladesh. Pharm J. 2019;22:1–6.

    Google Scholar 

  5. Caon T, Campos CEM, Simões CMO, Silva MAS. Novel perspectives in the tuberculosis treatment: administration of isoniazid through the skin. Int J Pharm. 2015;494:463–70.

    Article  CAS  Google Scholar 

  6. Chen S, Han Y, Yu D, Huo F, Wang F, Li Y, et al. Transdermal delivery of isoniazid and rifampin in guinea pigs by electro-phonophoresis. Drug Deliv. 2017;24(1):467–70.

    Article  CAS  Google Scholar 

  7. Hussain A, Altamimi MA, Alshehri S, Imam SS, Singh SK. Vesicular elastic liposomes for transdermal delivery of rifampicin: in-vitro, in-vivo and in silico GastroPlus™ prediction studies. Eur J Pharm Sci. 2020;151:105411.

    Article  CAS  Google Scholar 

  8. Ahmed M, Ramadan W, Rambhu D, Shakeel F. Potential of nanoemulsions for intravenous delivery of rifampicin. Pharmazie. 2008;63(11):806–11.

    CAS  PubMed  Google Scholar 

  9. Mathur IS, Gupta HP, Srivastav SK, Singh S, Madhu K, Khanna NM. Evaluation of subdermal biodegradable implants incorporating rifampicin as a method of drug delivery in experimental tuberculosis of guinea pigs. J Med Microbiol. 1985;20:387–92.

    Article  CAS  Google Scholar 

  10. Vyas SP, Kannan ME, Jain S, Mishra V, Singh P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int J Pharm. 2004;269:37–49.

    Article  CAS  Google Scholar 

  11. Chen L, Xie Z, Hu J, Chen X, Jing X. Enantiomeric PLA– PEG block copolymers and their stereocomplex micelles used as rifampin delivery. J Nanopart Res. 2007;9:777–85.

    Article  Google Scholar 

  12. Singh H, Jindal S, Singh M, Sharma G, Kaur IP. Nanoformulation of rifampicin with enhanced bioavailability: development, characterization and in-vivo safety. Int J Pharm. 2015;485:138–51.

    Article  CAS  Google Scholar 

  13. Kitak T, Dumicic A, Planinsek O, Sibanc R, Srcic S. Determination of solubility 10 parameters of ibuprofen and ibuprofen lysinate. Molecules. 2015;20:21549–68.

    Article  CAS  Google Scholar 

  14. Hussain A, Altamimi MA, Alshehri S, Imam SS. Assessment of solubility and Hansen solubility parameters of rifampicin in various permeation enhancers: experimental and computational approach. J Mol Liq. 2021:115432. In press, pre-proof.

  15. Hussain A, Singh SK, Singh N, Verma PRP. In vitro-in vivo in-silico simulation studies of anti-tubercular drugs doped with self-nanoemulsifying drug delivery system. RSC Adv. 2016;6:93147–61.

    Article  CAS  Google Scholar 

  16. Kalam MA, Khan AA, Alshamsan A, Haque A, Shakeel F. Solubility of a poorly soluble immunosuppressant in different pure solvents: measurement, correlation, thermodynamics and molecular interactions. J Mol Liq. 2018;249:53–60.

    Article  Google Scholar 

  17. Hildebrand JH, Scott RL. The solubility of nonelectrolytes. New York: Reinhold Pub. Corp; 1950. p. 514.

    Google Scholar 

  18. Hildebrand JH, Scott RL. Regular solutions. Saddle River: Prentice-Hall; 1962. p. 202.

    Google Scholar 

  19. Van Krevelen DW, te Nijenhuis K. Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Amsterdam, The Netherland; Tokyo, Japan: Elsevier; 2009. p. 189.

    Book  Google Scholar 

  20. Greenhalgh DJ, Williams AC, Timmins P, York P. Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci. 1999;88(11):1182–90.

    Article  CAS  Google Scholar 

  21. Hojjati H, Rohani S. Measurement and prediction of solubility of paracetamol in water–isopropanol solution. Part 2. Prediction. Org Process Res Dev. 2006;10:1110–8.

    Article  CAS  Google Scholar 

  22. Hansen CM. Hansen solubility parameters: a user’s handbook. 2nd ed. Boca Raton: CRC Press, Taylor Francis Group; 2007. p. 544.

    Book  Google Scholar 

  23. Ruidiaz MA, Delgado DR, Martínez F, Marcus Y. Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures. Fluid Phase Equilib. 2010;299:259–65.

    Article  CAS  Google Scholar 

  24. Halkowsky SH. Solubility and solubilization in aqueous media. New York: Oxford University Press; 1999, ISBN 0-8412-3576-7. p. 61–3.

    Google Scholar 

  25. Apelblat A, Manzurola E. Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic and p-toluic acid and magnesium-DL-aspartate in water from T = 20 (278–348) K. J Chem Thermodyn. 1999;31:85–91.

    Article  CAS  Google Scholar 

  26. Wei DW, Li H, Liu C, Wang BH. The effect of temperature on the solubility of 11-cyanoundecanoic acid in cyclohexane, n-hexane, and water. Ind Eng Chem Res. 2011;50:2473–7.

    Article  CAS  Google Scholar 

  27. Manzurola E, Apelblat A. Solubilities of L-glutamic acid, 3-nitrobenzoic acid, acetylsalicylic, p-toluic acid, calcium-L-lactate, calcium gluconate, magnesium-DL- aspartate, and magnesium-L-lactate in water. J Chem Thermodyn. 2002;34:1127–36.

    Article  CAS  Google Scholar 

  28. Krug RR, Hunter WG, Grieger RS. Enthalpy-entropy compensation. 2. Separation 5 of the chemical from the statistic effect. J Phys Chem. 1976;80:2341–51.

    Article  CAS  Google Scholar 

  29. Tao M, Wang Z, Gong J, Hao H, Wang J. Determination of the solubility, dissolution enthalpy, and entropy of pioglitazone hydrochloride (form II) in different pure solvents. Ind Eng Chem Res. 2013;52(8):3036–41.

    Article  CAS  Google Scholar 

  30. Holguín AR, Rodríguez GA, Cristancho DM, Delgado DR, Martínez F. Solution thermodynamics of indomethacin in propylene glycol + water mixtures. Fluid Phase Equilib. 2012;314:134–9.

    Article  Google Scholar 

  31. Akhtari H, Bazzaz BF, Golmohammadzadeh S, Movaffagh J, Soheili V, Khameneh B. Rifampin and cis-2-decenoic acid co-entrapment in solid lipid nanoparticles as an efficient nanosystem with potent anti-biofilm activities. J Pharm Innov. 2020. https://doi.org/10.1007/s12247-020-09446-0.

  32. Henwood SQ, Liebenberg W, Tiedt LR, Lötter AP, de Villiers MM. Characterization of the solubility and dissolution properties of several new rifampicin polymorphs, solvates, and hydrates. Drug Dev Ind Pharm. 2001;27(10):1017–30.

    Article  CAS  Google Scholar 

  33. Pelizza G, Nebuloni M, Ferrari P, Gallo GG. Polymorphism of rifampicin. Il Farmaco. 1977;32:471–81.

    CAS  Google Scholar 

  34. Mohammad MA, Alhalaweh A, Velaga SP. Hansen solubility parameter as a tool 5 to predict cocrystal formation. Int J Pharm. 2011;407:63–71.

    Article  CAS  Google Scholar 

  35. Alanazi A, Alshehri S, Altamimi M, Shakeel F. Solubility determination and three dimensional Hansen solubility parameters of gefitinib in different organic solvents: experimental and computational approaches. J Mol Liq. 2020;299. https://doi.org/10.1016/j.molliq.2019.112211.

  36. Guner A. The algorithmic calculations of solubility parameter for the determination of interactions in dextran/certain polar solvent systems. Eur Polym J. 2004;40:1587–94.

    Article  CAS  Google Scholar 

  37. Etman MA, Naggar VF. Thermodynamics of paracetamol solubility in sugar-water cosolvent systems. Int J Pharm. 1999;58:177–84.

    Article  Google Scholar 

  38. www.sciencedirect.com. Rifampin. Tuberculosis. 2008;88(2):151–154.

  39. Trevaskis NL, Charman WN, Porter CJH. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev. 2008;60:702–16.

    Article  CAS  Google Scholar 

  40. Atrigel® for subcutaneous delivery. A pharmacology review. NDA number 21-343. US FDA review leaflet. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2002/21-343_Eligard_pharmr.pdf.

  41. Ursin C, Hansen CM, Van Dyk JW, Jensen PO, Christensen IJ, Ebbehoej J. Permeability of commercial solvents through living human skin. Am Ind Hyg Assoc J. 1995;56:651–60.

    Article  CAS  Google Scholar 

  42. World Health Organization (WHO). Concise international chemical assessment document 39. N-Methyl-2-pyrrolidone. WHO, Geneva; 2001.

Download references

Acknowledgement

“The authors would like to thank the Deanship of Scientific Research at King Saud University for supporting this study through research group project number (RG-1441-443)”.

Author information

Authors and Affiliations

Authors

Contributions

Wael A. Mahdi: conceptualization and funding acquisition, Afzal Hussain: methodology and writing—original draft and review, Mohammad A. Altamimi: software and data curation, Sultan Alshehri: data curation, Sarah I Bukhari: formal review, Mohd. Neyaz Ahsan: software and analysis.

Corresponding author

Correspondence to Afzal Hussain.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdi, W.A., Hussain, A., Altamimi, M.A. et al. Experimental Solubility, Thermodynamic/Computational Validations, and GastroPlus-Based In Silico Prediction for Subcutaneous Delivery of Rifampicin. AAPS PharmSciTech 22, 116 (2021). https://doi.org/10.1208/s12249-021-01987-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-01987-y

KEY WORDS

Navigation