Skip to main content

Advertisement

Log in

Lipospheres for Simultaneous Controlled Release and Improved Pharmacokinetic Profiles of Saxagliptin-Enalapril: Formulation, Optimization, and Comparative In Vitro-In Vivo Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The current study aims at formulating and optimizing lipospheres (LS) by the Box-Behnken design (BBD) from safe biodegradable carnauba wax (CW) to co-administer saxagliptin (SG) and enalapril (EP) for co-existing chronic hypertensive diabetes in order to overcome inadequacies of conventional modes of drug administration. Optimized liposphere formulation (OLF) was selected by a numerical optimization procedure and a comparative in vivo pharmacokinetic study of OLF and commercial brands was also performed. Discrete, free-flowing, spherical, smooth-surface LS having a size range of 5–10 μm and zeta potential of − 20 to − 30 mV were successfully formulated. Compatibility studies by FTIR and DSC proved the lack of interaction of components while XRD suggested the transformation of crystalline drugs to amorphous form. Outcomes of dependent optimizing variables like percentage yield (30–90%), EP-release (32–92%), and SG-release (28–95%) followed a polynomial quadratic model. Pharmacokinetics studies indicated a significantly lower Cmax of EP (125.22 ± 6.32) and SG (75.63 ± 3.85) and higher mean Tmax values (9.4 h for EP and 10.73 h for SG) from OLF in comparison with reference brands of EP (257.54 ± 8.23 ng/mL) and SG (393.66 ± 2.97 ng/mL). Additionally, a potential rise in half-life and MRT of SG and EP was achieved reaching approximately 2- to 3-fold higher than noted for reference brands. Importantly, the enhanced Tmax and AUC0–24 specified the achievement of enhanced bioavailability of both drugs from LS. Consequently, such an innovative approach could not only control drug release in both in vitro and in vivo analyses but also maintain plasma drug concentration for a longer time without maximizing Cmax leading towards effective management of chronic illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Messerli FH, Grossman E, Goldbourt U. Antihypertensive therapy in diabetic hypertensive patients. Am J Hypertens. 2001;14(S2):12S–6S.

    Article  CAS  PubMed  Google Scholar 

  2. Contreras F, Rivera M, Vasquez J, De la Parte MA, Velasco M. Diabetes and hypertension pathophysiology and therapeutics. J Hum Hypertens. 2000;14:S26–31.

    Article  PubMed  Google Scholar 

  3. Benford M, Milligan G, Pike J, Anderson P, Piercy J, Fermer S. Fixed-dose combination antidiabetic therapy: real-world factors associated with prescribing choices and relationship with patient satisfaction and compliance. Adv Ther. 2012;29(1):26–40.

    Article  CAS  PubMed  Google Scholar 

  4. Chobanian AV. Impact of nonadherence to antihypertensive therapy. Circulation. 2009;120:1558–60.

    Article  PubMed  Google Scholar 

  5. Shivakumar H, Patel P, Desai B, Ashok P, Arulmozhi S. Design and statistical optimization of glipizide loaded lipospheres using response surface methodology. Acta Pharma. 2007;57(3):269–85.

    CAS  Google Scholar 

  6. Whalen KL, Stewart RD. Pharmacologic management of hypertension in patients with diabetes. Am Fam Physician. 2008;78(11):1277–82.

    PubMed  Google Scholar 

  7. Arauz-Pacheco C, Parrott MA, Raskin P. The treatment of hypertension in adult patients with diabetes (technical review). Diabetes Care. 2002;25:134–47.

    Article  PubMed  Google Scholar 

  8. Boulton DW. Clinical pharmacokinetics and pharmacodynamics of saxagliptin, a dipeptidyl peptidase-4 inhibitor. Clin Pharmacokinet. 2017;56(1):11–24.

    Article  CAS  PubMed  Google Scholar 

  9. Momoh M, Kenechukwu F, Attama A. Formulation and evaluation of novel solid lipid microparticles as a sustained release system for the delivery of metformin hydrochloride. Drug deliv. 2013;20(3–4):102–11.

    Article  CAS  PubMed  Google Scholar 

  10. Hao J, Fang X, Zhou Y, Wang J, Guo F, Li F, et al. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a box-Behnken design. Int J Nanomedicine. 2011;6:683–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jones E, Ojewole E, Kalhapure R, Govender T. In vitro comparative evaluation of monolayered multipolymeric films embedded with didanosine-loaded solid lipid nanoparticles: a potential buccal drug delivery system for ARV therapy. Drug Dev Ind Pharm. 2014;40(5):669–79.

    Article  CAS  PubMed  Google Scholar 

  12. Nemati E, Mokhtarzadeh A, Panahi-Azar V, Mohammadi A, Hamishehkar H, Mesgari-Abbasi M, et al. Ethambutol-loaded solid lipid nanoparticles as dry powder inhalable formulation for tuberculosis therapy. AAPS PharmSciTech. 2019;20:120.

    Article  CAS  PubMed  Google Scholar 

  13. Mohamed RA, Abass HA, Attia MA, Heikal OA. Formulation and evaluation of metoclopramide solid lipid nanoparticles for rectal suppository. J Pharm Pharmacol. 2013;65(11):1607–21.

    Article  CAS  PubMed  Google Scholar 

  14. Jaspart S, Piel G, Delattre L, Evrard B. Solid lipid microparticles: formulation, preparation, characterization, drug release and applications. Expert Opin Drug Del. 2005;2(1):75–87.

    Article  CAS  Google Scholar 

  15. Kurade VP, Pai MG, Gude R. RP-HPLC estimation of Ramipril and Telmisartan in tablets. Indian J Pharm Sci. 2009;71(2):148–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karthik A, Subramanian G, Mallikariuna RC, Krishnamurthy B, Ranjithkumar A, Musmade P, et al. Simultaneous determination of pioglitazone and glimepiride in bluk drug and pharmaceutical dosage form by RP-HPLC method. Pak J Pharm Sci. 2008;21(4):421–6.

    CAS  Google Scholar 

  17. Shazley GA. Ciprofloxacin controlled-solid lipid nanoparticles: Characterization, In-vitro release and antibacterial assessment. Biomed Res Int. 2017; Article ID:2120734.

  18. Passerini N, Perissutti B, Albertini B, Voinovich D, Moneghini M, Rodriguez L. Controlled release of verapamil hydrochloride from waxy microparticles prepared by spray congealing. J Control Release. 2003;88(2):263–75.

    Article  CAS  PubMed  Google Scholar 

  19. Nandy BC, Mazumder B. Formulation and characterizations of delayed release multi- particulates system of indomethacin: optimization by response surface methodology. Curr Drug Deliv. 2014;11(1):72–86.

    Article  CAS  PubMed  Google Scholar 

  20. Jelvehgari M, Valizadeh H, Motlagh RJ, Montazam H. Formulation and physicochemical characterization of buccoadhesive microspheres containing diclofenac sodium. Adv Pharm Bull. 2014;4(3):295–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dai W, Zhang D, Duan C, Jia L, Wang Y, Feng F, et al. Preparation and characteristics of oridonin-loaded nanostructured lipid carriers as a controlled-release delivery system. J Microencapsul. 2010;27(3):234–41.

    Article  CAS  PubMed  Google Scholar 

  22. Elsayed I, Abdelbary AA, Elshafeey HA. Nanosizing of a poorly soluble drug: technique optimization, factorial analysis, and pharmacokinetic study in healthy human volunteers. Int J Nanomedicine. 2014;9:2943–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu XG, Li G, Gao YL. Optimization of the preparation of nalmefene-loaded sustained- release microspheres using central composite design. Chem Pharm Bull. 2006;54(7):977–81.

    Article  CAS  PubMed  Google Scholar 

  24. Varshosaz J, Keihanfar M. Development and evaluation of sustained-release propranolol wax microspheres. J Microencapsul. 2001;18(3):277–84.

    Article  CAS  PubMed  Google Scholar 

  25. Srikanth MV, Rao NS, Sunil SA, Ram BJ, Kolapalli VRM. Statistical design and evaluation of a propranolol HCl gastric floating tablet. Acta Pharm Sin B. 2012;2(1):60–9.

    Article  Google Scholar 

  26. Barakat NS, Yassin AEB. In vitro characterization of carbamazepine-loaded precifac lipospheres. Drug Deliv. 2006;13(2):95–104.

    Article  CAS  PubMed  Google Scholar 

  27. Vivek K, Reddy H, Murthy RSR. Investigations of effect of lipid matrix on drug entrapment, in vitro release and physical stability of olanzapine-loaded solid lipid nanoparticles. AAPS PharmSciTech. 2007;8:16–24.

    Article  PubMed Central  Google Scholar 

  28. Iswariya VT, Rao AHP, Babu VL, Rao AS. Formulation and evaluation of oro-dispersible tablets of saxagliptin. Int J Pharm Sci Rev Res. 2015;42:230–4.

    Google Scholar 

  29. Abbas AK, Alhamdany AT. Floating microspheres of enalapril maleate as a developed controlled release dosage form: investigation the effect of ionotropic gelation technique. Turk J Pharm Sci. 2018. https://doi.org/10.4274/tjps.15046.

  30. Singh C, Koduri LVSK, Bhatt TD, Jhamb SS, Mishra V, Gill MS, et al. In vitro-in vivo evaluation of novel co-spray dried rifampicin phospholipid Lipospheres for Oral delivery. AAPS PharmSciTech. 2017;18:138–46.

    Article  CAS  PubMed  Google Scholar 

  31. Gomaa Y, Darwish I, Boraei N, El-Khordagui L. Formulation of wax oxybenzone microparticles using a factorial approach. J Microencapsul. 2010;27(7):628–39.

    Article  CAS  PubMed  Google Scholar 

  32. Milak S, Medlicott N, Tucker IG. Solid lipid microparticles containing loratadine prepared using a micromixer. J Microencapsul. 2006;23(8):823–31.

    Article  CAS  PubMed  Google Scholar 

  33. Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2):165–96.

    Article  CAS  PubMed  Google Scholar 

  34. Banerjee A, Roychoudhury J, Ali N. Stearylamine-bearing cationic liposomes kill leishmania parasites through surface exposed negatively charged phosphatidylserine. J Antimicrob Chemother. 2008;61:103–10.

    Article  CAS  PubMed  Google Scholar 

  35. Gowda D, Shivakumar H. Preparation and evaluation of waxes/fat microspheres loaded with lithium carbonate for controlled release. Indian J Pharm Sci. 2007;69(2):251.

    Article  CAS  Google Scholar 

  36. Blychert E, Wingstrand K, Edgar B, Lidman K. Plasma concentration profiles and antihypertensive effect of conventional and extended-release felodipine tablets. Br J Clin Pharmacol. 1990;29(1):39–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Soma D, Attari Z, Reddy MS, Damodaram A, Koteshwara KB. Solid lipid nanoparticles of irbesartan: preparation, characterization, optimization and pharmacokinetic studies. Braz J Pharm Sci. 2017;53(1):e15012.

    Article  Google Scholar 

  38. Momoh MA, Kenechukwu FC, Gwarzo MS, Builders PF. Formulation and evaluation of ibuprofen loaded lipospheres for effective oral drug delivery. Dhaka Univ J Pharm Sci. 2015;14(1):17–27.

    Article  CAS  Google Scholar 

  39. Mahajan A, Kaur S. Design, characterization and pharmacokinetic studies of solid lipid nanoparticles of antihypertensive drug Telmisartan. Int J Pharm Sci Res. 2017;8(8):3402–12.

    CAS  Google Scholar 

  40. El-Say KM, Hosny KM. Optimization of carvedilol solid lipid nanoparticles: an approach to control the release and enhance the oral bioavailability on rabbits. PLoS One. 2018;13(8):e0203405.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Harde H, Das M, Jain S. Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert Opin Drug Deliv. 2011;8:1407–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhtar Rasul.

Ethics declarations

Conflict of Interest

The authors declared that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maheen, S., Rasul, A., Hanif, M. et al. Lipospheres for Simultaneous Controlled Release and Improved Pharmacokinetic Profiles of Saxagliptin-Enalapril: Formulation, Optimization, and Comparative In Vitro-In Vivo Evaluation. AAPS PharmSciTech 21, 188 (2020). https://doi.org/10.1208/s12249-020-01733-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01733-w

KEY WORDS

Navigation