Skip to main content

Advertisement

Log in

Biosynthesis, Characterization, and Wound-Healing Activity of Phenytoin-Loaded Copper Nanoparticles

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Wound-healing is a very complex and evolutionary process that involves a great variety of dynamic steps. Although different pharmaceutical agents have been developed to hasten the wound-healing process, the existing agents are still far from optimal. The present work aimed to prepare and evaluate the wound-healing efficacy of phenytoin-loaded copper nanoparticles (PHT-loaded CuNPs). CuNPs were biosynthesized using licorice aqueous extract. The prepared CuNPs were loaded with PHT by adsorption, characterized, and evaluated for wound-healing efficiency. Results showed that both plain and PHT-loaded CuNPs were monodisperse and exhibited a cubic and hexagonal morphology. The mechanism by which PHT was adsorbed on the surface of CuNPs was best fit by the Langmuir model with a maximum loaded monolayer capacity of 181 mg/g. The kinetic study revealed that the adsorption reaction followed the pseudo-second order while the thermodynamic parameters indicated that the adsorption process was physical in nature and endothermic, and occurred spontaneously. Moreover, the in vivo wound-healing activity of PHT-loaded CuNP impregnated hydroxypropylmethyl cellulose (HPMC) gel was carried out using an excisional wound model in rats. Data showed that PHT-loaded CuNPs accelerated epidermal regeneration and stimulated granulation and tissue formation in treated rats compared to controls. Additionally, quantitative real-time polymerase chain reaction (RT-PCR) analysis showed that lesions treated with PHT-loaded CuNPs were associated with a marked increase in the expression of dermal procollagen type I and a decrease in the expression of the inflammatory JAK3 compared to control samples. In conclusion, PHT-loaded CuNPs are a promising platform for effective and rapid wound-healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PHT:

Phenytoin

CuNPs:

Copper nanoparticles

HPMC:

Hydroxypropylmethyl cellulose

RT-PCR:

Quantitative real-time polymerase chain reaction

References

  1. Pereira R, Carvalho A, Vaz DC, Gil M, Mendes A, Bártolo P. Development of novel alginate based hydrogel films for wound-healing applications. Int J Biol Macromol. 2013;52:221–30.

    Article  CAS  PubMed  Google Scholar 

  2. Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound-healing dressings and drug delivery systems: a review. J Pharm Sci. 2008;97(8):2892–923. https://doi.org/10.1002/jps.21210.

    Article  CAS  PubMed  Google Scholar 

  3. Nevitt SJ, Tudur Smith C, Marson AG. Phenobarbitone versus phenytoin monotherapy for epilepsy: an individual participant data review. Cochrane Database Syst Rev. 2019;7:CD002217. https://doi.org/10.1002/14651858.CD002217.pub3.

    Article  PubMed  Google Scholar 

  4. Glauser T, Ben-Menachem E, Bourgeois B, Cnaan A, Guerreiro C, Kalviainen R, et al. Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia. 2013;54(3):551–63. https://doi.org/10.1111/epi.12074.

    Article  CAS  PubMed  Google Scholar 

  5. Wiffen PJ. Phenytoin for neuropathic pain and fibromyalgia in adults. J Pain Palliat Care Pharmacother. 2012;26(4):381.

    Article  Google Scholar 

  6. Arya R, Gulati S. Phenytoin-induced gingival overgrowth. Acta Neurol Scand. 2012;125(3):149–55. https://doi.org/10.1111/j.1600-0404.2011.01535.x.

    Article  CAS  PubMed  Google Scholar 

  7. Motawea A, Abd El-Gawad AE-GH, Borg T, Motawea M, Tarshoby M. The impact of topical phenytoin loaded nanostructured lipid carriers in diabetic foot ulceration. Foot. 2019;40:14–21. https://doi.org/10.1016/j.foot.2019.03.007.

    Article  Google Scholar 

  8. Hao XLH, Su H, Cai H, Guo T, Liu R, Jiang L, et al. Topical phenytoin for treating pressure ulcers. Cochrane Database Syst Rev. 2017;(Issue 2). https://doi.org/10.1002/14651858.CD008251.pub2.

  9. Talas G, Brown RA, McGrouther DA. Role of phenytoin in wound-healing--a wound pharmacology perspective. Biochem Pharmacol. 1999;57(10):1085–94.

    Article  CAS  PubMed  Google Scholar 

  10. Keppel Hesselink JM. Phenytoin repositioned in wound-healing: clinical experience spanning 60 years. Drug Discov Today. 2018;23(2):402–8. 1016/j.drudis.2017.09.020.

  11. Rhodes RS, Heyneman CA, Culbertson VL, Wilson SE, Phatak HM. Topical phenytoin treatment of stage II decubitus ulcers in the elderly. Ann Pharmacother. 2001;35(6):675–81. https://doi.org/10.1345/aph.10267.

    Article  CAS  PubMed  Google Scholar 

  12. Hasamnis AA, Mohanty BK, Patil S. Evaluation of wound-healing effect of topical phenytoin on excisional wound in albino rats. J Young Pharm. 2010;2(1):59–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borkow G, Gabbay J, Dardik R, Eidelman AI, Lavie Y, Grunfeld Y, et al. Molecular mechanisms of enhanced wound-healing by copper oxide-impregnated dressings. Wound Repair Regen. 2010;18(2):266–75.

    Article  PubMed  Google Scholar 

  14. Tiwari M, Narayanan K, Thakar MB, Jagani HV, Venkata RJ. Biosynthesis and wound-healing activity of copper nanoparticles. IET Nanobiotechnol. 2014;8(4):230–7. https://doi.org/10.1049/iet-nbt.2013.0052.

    Article  PubMed  Google Scholar 

  15. Sharma P, Pant S, Dave V, Tak K, Sadhu V, Reddy KR. Green synthesis and characterization of copper nanoparticles by Tinospora cardifolia to produce nature-friendly copper nano-coated fabric and their antimicrobial evaluation. J Microbiol Methods. 2019;160:107–16. https://doi.org/10.1016/j.mimet.2019.03.007.

    Article  CAS  PubMed  Google Scholar 

  16. Gopal A, Kant V, Gopalakrishnan A, Tandan SK, Kumar D. Chitosan-based copper nanocomposite accelerates healing in excision wound model in rats. Eur J Pharmacol. 2014a;731:8–19. https://doi.org/10.1016/j.ejphar.2014.02.033.

    Article  CAS  PubMed  Google Scholar 

  17. Sen CK, Khanna S, Venojarvi M, Trikha P, Ellison EC, Hunt TK, et al. Copper-induced vascular endothelial growth factor expression and wound-healing. Am J Physiol Heart Circ Physiol. 2002;282(5):H1821–7. https://doi.org/10.1152/ajpheart.01015.2001.

    Article  CAS  PubMed  Google Scholar 

  18. Alizadeh S, Seyedalipour B, Shafieyan S, Kheime A, Mohammadi P, Aghdami N. Copper nanoparticles promote rapid wound-healing in acute full thickness defect via acceleration of skin cell migration, proliferation, and neovascularization. Biochem Biophys Res Commun. 2019;517:684–90. https://doi.org/10.1016/j.bbrc.2019.07.110.

    Article  CAS  PubMed  Google Scholar 

  19. Hamdan S, Pastar I, Drakulich S, Dikici E, Tomic-Canic M, Deo S, et al. Nanotechnology-driven therapeutic interventions in wound-healing: potential uses and applications. ACS Cent Sci. 2017;3(3):163–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang W, Lu K-J, Yu C-H, Huang Q-L, Du Y-Z. Nano-drug delivery systems in wound treatment and skin regeneration. J Nanobiotechnol. 2019;17(1):82.

    Article  CAS  Google Scholar 

  21. Nethi SK, Das S, Patra CR, Mukherjee S. Recent advances in inorganic nanomaterials for wound-healing applications. Biomater Sci. 2019;7(7):2652–74.

    Article  CAS  PubMed  Google Scholar 

  22. Vijayakumar V, Samal SK, Mohanty S, Nayak SK. Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound-healing management. Int J Biol Macromol. 2019;122:137–48.

    Article  CAS  PubMed  Google Scholar 

  23. Najeeb VD, Al-Refai AS. Antibacterial effect and healing potential of topically applied licorice root extract on experimentally induced oral wounds in rabbits. Saudi J Oral Sci. 2015;2(1):10.

    Article  Google Scholar 

  24. Suwannakul S, Wacharanad S, Chaibenjawong P. Rapid green synthesis of silver nanoparticles and evaluation of their properties for oral disease therapy. Songklanakarin J Sci Technol. 2018;40(4).

  25. Fuhrman B, Buch S, Vaya J, Belinky P, Coleman R, Hayek T, et al. Licorice extract and its major polyphenol glabridin protect low-density lipoprotein against lipid peroxidation: in vitro and ex vivo studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am J Clin Nutr. 1997;66(2):267–75.

    Article  CAS  PubMed  Google Scholar 

  26. Theivasanthi T, Alagar M. X-ray diffraction studies of copper nanopowder. arXiv preprint arXiv:10036068. 2010.

  27. Chen S, Shen W, Yu F, Hu W, Wang H. Preparation of amidoximated bacterial cellulose and its adsorption mechanism for Cu2+ and Pb2+. J Appl Polym Sci. 2010;117(1):8–15.

    CAS  Google Scholar 

  28. Erhayem M, Al-Tohami F, Mohamed R, Ahmida K. Isotherm, kinetic and thermodynamic studies for the sorption of mercury (II) onto activated carbon from Rosmarinus officinalis leaves. Am J Anal Chem. 2015;6(01):1–10.

    Article  CAS  Google Scholar 

  29. Dada A, Olalekan A, Olatunya A, Dada O. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J Appl Chem. 2012;3(1):38–45.

    Article  CAS  Google Scholar 

  30. Pursell CJ, Chandler BD, Manzoli M, Boccuzzi F. CO adsorption on supported gold nanoparticle catalysts: application of the Temkin model. J Phys Chem C. 2012;116(20):11117–25.

    Article  CAS  Google Scholar 

  31. Nguyen C, Do D. The Dubinin–Radushkevich equation and the underlying microscopic adsorption description. Carbon. 2001;39(9):1327–36.

    Article  CAS  Google Scholar 

  32. El-Raman KMA, El-Sourougy MR, Abdel-Monem NM, Ismail IM. Modeling the sorption kinetics of cesium and strontium ions on zeolite A. J Nucl Radiochem Sci. 2006;7(2):21–7.

    Article  Google Scholar 

  33. Ho Y-S, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34(5):451–65.

    Article  CAS  Google Scholar 

  34. Wu F-C, Tseng R-L, Juang R-S. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem Eng J. 2009;150(2–3):366–73.

    Article  CAS  Google Scholar 

  35. Largitte L, Pasquier R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem Eng Res Des. 2016;109:495–504.

    Article  CAS  Google Scholar 

  36. Kim Y-S, Kim J-H. Isotherm, kinetic and thermodynamic studies on the adsorption of paclitaxel onto Sylopute. J Chem Thermodyn. 2019;130:104–13. https://doi.org/10.1016/j.jct.2018.10.005.

    Article  CAS  Google Scholar 

  37. Chen W-Y, Huang H-M, Lin C-C, Lin F-Y, Chan Y-C. Effect of temperature on hydrophobic interaction between proteins and hydrophobic adsorbents: studies by isothermal titration calorimetry and the van’t Hoff equation. Langmuir. 2003;19(22):9395–403.

    Article  CAS  Google Scholar 

  38. Helal DA, El-Rhman DA, Abdel-Halim SA, El-Nabarawi MA. Formulation and evaluation of fluconazole topical gel. Int J Pharm Pharm Sci. 2012;4(5):176–83.

    CAS  Google Scholar 

  39. Mekkawy A, El-Mokhtar M, Nafady N, Yousef N, Hamad M, El-Shanawany S, et al. In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels. Int J Nanomedicine. 2017;12:759–77. https://doi.org/10.2147/ijn.s124294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bhatia A, Prakash S. Topical phenytoin for wound-healing. Dermatol Online J. 2004;10(1):5.

    PubMed  Google Scholar 

  41. Jurjus A, Atiyeh BS, Abdallah IM, Jurjus RA, Hayek SN, Jaoude MA, et al. Pharmacological modulation of wound-healing in experimental burns. Burns. 2007;33(7):892–907. https://doi.org/10.1016/j.burns.2006.47.406.

    Article  PubMed  Google Scholar 

  42. Abdel-Maguid E, Awad S, Hassan Y, El-Mokhtar M, El-Deek H, Mekkawy M. Efficacy of stem cell-conditioned medium vs platelet-rich plasma as an adjuvant to post-ablative fractional CO 2 laser resurfacing for atrophic post-acne scars: a split-face clinical trial. J Dermatol Treat. 2019:1–24. https://doi.org/10.1080/09546634.2019.1630701.

  43. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–8.

    Article  CAS  Google Scholar 

  44. Hanafi N, Shahani S, Enayatifard R, Talebpour Amiri F, Ghasemi M, Karimpour AA. Licorice cream promotes full-thickness wound-healing in guinea pigs. Marmara Pharm J. 2018;22(3):411–21.

    CAS  Google Scholar 

  45. Zayed GM, Kamal I, Abdelhafez WA, Alsharif FM, Amin MA, Shaykoon MSA, et al. Effect of chemical binding of doxorubicin hydrochloride to gold nanoparticles, versus electrostatic adsorption, on the in vitro drug release and cytotoxicity to breast cancer cells. Pharm Res. 2018;35(6):112.

    Article  PubMed  CAS  Google Scholar 

  46. Hassanien R, Husein DZ, Al-Hakkani MF. Biosynthesis of copper nanoparticles using aqueous Tilia extract: antimicrobial and anticancer activities. Heliyon. 2018;4(12):e01077.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chauhan A, Chauhan P. Powder XRD technique and its applications in science and technology. J Anal Bioanal Tech. 2014;5(5):1–5.

    Google Scholar 

  48. Park BK, Jeong S, Kim D, Moon J, Lim S, Kim JS. Synthesis and size control of monodisperse copper nanoparticles by polyol method. J Colloid Interface Sci. 2007;311(2):417–24. https://doi.org/10.1016/j.jcis.2007.03.039.

    Article  CAS  PubMed  Google Scholar 

  49. Suárez-Cerda J, Espinoza-Gómez H, Alonso-Núñez G, Rivero IA, Gochi-Ponce Y, Flores-López LZ. A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. J Saudi Chem Soc. 2017;21(3):341–8.

    Article  CAS  Google Scholar 

  50. Payne KB, Abdel-Fattah TM. Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: effects of pH, temperature, and ionic strength. J Environ Sci Health. 2005;40(4):723–49.

    Article  CAS  Google Scholar 

  51. Husein DZ, Hassanien R, Al-Hakkani MF. Green-synthesized copper nano-adsorbent for the removal of pharmaceutical pollutants from real wastewater samples. Heliyon. 2019;5(8):e02339.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Husein DZ. Adsorption and removal of mercury ions from aqueous solution using raw and chemically modified Egyptian mandarin peel. Desalin Water Treat. 2013;51(34–36):6761–9.

    Article  CAS  Google Scholar 

  53. Forrest L. Current concepts in soft connective tissue wound-healing. Br J Surg. 1983;70(3):133–40. https://doi.org/10.1002/bjs.1800700302.

    Article  CAS  PubMed  Google Scholar 

  54. Haukipuro K, Melkko J, Risteli L, Kairaluoma M, Risteli J. Synthesis of type I collagen in healing wounds in humans. Ann Surg. 1991;213(1):75–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Taga T, Kishimoto T. Signaling mechanisms through cytokine receptors that share signal transducing receptor components. Curr Opin Immunol. 1995;7(1):17–23. https://doi.org/10.1016/0952-7915(95)80024-7.

    Article  CAS  PubMed  Google Scholar 

  56. Amin HM, Medeiros LJ, Ma Y, Feretzaki M, Das P, Leventaki V, et al. Inhibition of JAK3 induces apoptosis and decreases anaplastic lymphoma kinase activity in anaplastic large cell lymphoma. Oncogene. 2003;22(35):5399–407. https://doi.org/10.1038/sj.onc.1206849.

    Article  CAS  PubMed  Google Scholar 

  57. Dien Bard J, Gelebart P, Anand M, Zak Z, Hegazy SA, Amin HM, et al. IL-21 contributes to JAK3/STAT3 activation and promotes cell growth in ALK-positive anaplastic large cell lymphoma. Am J Pathol. 2009;175(2):825–34. https://doi.org/10.2353/ajpath.2009.080982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J. 1998;334(Pt 2):297–314. https://doi.org/10.1042/bj3340297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Howell MD, Kuo FI, Smith PA. Targeting the Janus kinase family in autoimmune skin diseases. Front Immunol. 2019;10:2342. https://doi.org/10.3389/fimmu.2019.02342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Alves de Medeiros AK, Speeckaert R, Desmet E, Van Gele M, Deschepper S, Lambert J. JAK3 as an emerging target for topical treatment of inflammatory skin diseases. PloS ONE. 2016;11(10):e0164080. https://doi.org/10.1371/journal.pone.0164080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahd M. Alsharif.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 33.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saddik, M.S., Alsharif, F.M., El-Mokhtar, M.A. et al. Biosynthesis, Characterization, and Wound-Healing Activity of Phenytoin-Loaded Copper Nanoparticles. AAPS PharmSciTech 21, 175 (2020). https://doi.org/10.1208/s12249-020-01700-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01700-5

KEY WORDS

Navigation