Skip to main content
Log in

A Cheap and Convenient Method of Liposome Preparation Using Glass Beads as a Source of Shear Force

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Liposomes, the biocompatible lipid bilayer vesicles, have attracted immense attention due to their distinctive features such as efficient vehicle for the delivery of a wide range of therapeutic agents, adjustable formulation properties, and high drug entrapment efficiency. In this contribution, we present a simple method for the preparation of liposomes using glass beads and compared the potential of this method with conventional methods of liposome preparation. The prepared liposomes were characterized by different analytical techniques (HPLC, DLS, TEM, differential scanning calorimetry, and in vitro drug release). Our findings revealed that the particle size of liposomes is mainly dependent on the size of the glass beads and the glass bead shearing time. An average liposome size of 67.7 ± 25.5 nm was obtained using 2-mm glass beads after 24-h incubation at 200 rpm. The liposomes prepared under the optimized conditions exhibited a high encapsulation efficiency of 92.1 ± 1.7% with 31.08% drug release after 360 min at 37°C. In conclusion, the developed method is a simple and convenient process of liposome preparation of different sizes with desirable entrapment efficiency capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Am B:

Amphotericin B

GB:

Glass beads method

TF:

Thin film method

RPE:

Reverse-phase evaporation method

EPC:

Egg phosphatidylcholine

CHOL:

Cholesterol

References

  1. Muthuand MS, Feng SS. Theranostic liposomes for cancer diagnosis and treatment: current development and pre-clinical success. Expert Opin Drug Deliv. 2012;10:151–5.

    Google Scholar 

  2. Jøraholmen MW, Vanić Ž, Tho I, Škalko-Basnet N. Chitosan-coated liposomes for topical vaginal therapy: assuring localized drug effect. Int J Pharm. 2014;472:94–101.

    Article  PubMed  Google Scholar 

  3. Rustand DM, Jameson G. The novel lipid delivery system of amphotericin B: drug profile and relevance to clinical practice. Oncol Nurs Forum. 1998;25:35–48.

    Google Scholar 

  4. Mishra J, Dey A, Singh N, Somvanshi R, Singh S. Evaluation of toxicity & therapeutic efficacy of a new liposomal formulation of amphotericin B in a mouse model. Indian J Med Res. 2013;137:767–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zaru M, Sinico C, De LA, Caddeo C, Lai F, Manca ML, et al. Rifampicin-loaded liposomes for the passive targeting to alveolar macrophages: in vitro and in vivo evaluation. J Liposome Res. 2009;19:68–76.

    Article  CAS  PubMed  Google Scholar 

  6. Silvermanand JA, Deitcher SR. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol. 2013;71:555–64.

    Article  Google Scholar 

  7. Liand SD, Huang L. Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim Biophys Acta. 2009;1788:2259–66.

    Article  Google Scholar 

  8. Coderch L, Fonollosa J, Pera MD, Estelrich J, Maza ADL, Parra JL. Influence of cholesterol on liposome fluidity by EPR : relationship with percutaneous absorption. J Control Release. 2000;68:85–95.

    Article  CAS  PubMed  Google Scholar 

  9. Ran R, Middelberg APJ, Zhao CX. Microfluidic synthesis of multifunctional liposomes for tumour targeting. Colloids Surf B Biointerfaces. 2016;148:402–10.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang WG, Liang JH, Cai YJ. Preparation of vitamin E liposomes by the thin film method and study on its leakage rate. Adv Mater Res. 2011;236-238:2207–10.

    Article  CAS  Google Scholar 

  11. Li K, Chang S, Wang Z, Zhao X, Chen D. A novel micro-emulsion and micelle assembling method to prepare DEC205 monoclonal antibody coupled cationic nanoliposomes for simulating exosomes to target dendritic cells. Int J Pharm. 2015;491:105–12.

    Article  CAS  PubMed  Google Scholar 

  12. Ding BM. Preparation and stability of proanthocyanidin liposomes by thin film-extrusion method. Food Sci Technol. 2013;

  13. Sakai H, Gotoh T, Imura T, Sakai K, Otake K, Abe M. Preparation and properties of liposomes composed of various phospholipids with different hydrophobic chains using a supercritical reverse phase evaporation method. J Oleo Sci. 2008;57:613–21.

    Article  CAS  PubMed  Google Scholar 

  14. Yang K, Delaney JT, Schubert US, Fahr A. Fast high-throughput screening of temoporfin-loaded liposomal formulations prepared by ethanol injection method. J Liposome Res. 2012;22:31–41.

    Article  PubMed  Google Scholar 

  15. Pupo E, Padrón A, Santana E, Sotolongo J, Quintana D, Dueñas S, et al. Preparation of plasmid DNA-containing liposomes using a high-pressure homogenization–extrusion technique. J Control Release. 2005;104:379–96.

    Article  CAS  PubMed  Google Scholar 

  16. Matthew HDL, Kennedy J, Moeller T, Kirui D, Batt CA. Analysis of a laminar-flow diffusional mixer for directed self-assembly of liposomes. Biomicrofluidics. 2012;6:44119.

    Article  Google Scholar 

  17. Otake K, Shimomura T, Goto T, Imura T, Furuya T, Yoda S, et al. Preparation of liposomes using an improved supercritical reverse phase evaporation method. Langmuir. 2006;22:2543–50.

    Article  CAS  PubMed  Google Scholar 

  18. H Z-Y, Ma C-C, Xia S, Ren K, Hui L-W, Qin H-X, et al. α, ω-Cholesterol-functionalized low molecular weight polyethylene glycol as a novel modifier of cationic liposomes for gene delivery. Int J Mol Sci. 2014;15:20339–54.

    Article  Google Scholar 

  19. Al-Ahmady ZS, Al-Jamal WT, Bossche JV, Bui TT, Drake AF, Mason AJ, et al. Lipid-peptide vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo. ACS Nano. 2012;6:9335–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang WX, Feng SS, Zheng CH. A comparison between conventional liposome and drug-cyclodextrin complex in liposome system. Int J Pharm. 2016;513:387–92.

    Article  CAS  PubMed  Google Scholar 

  21. Narsaiah K, Jha SN, Wilson RA, Mandge HM, Manikantan MR. Pediocin-loaded nanoliposomes and hybrid alginate–nanoliposome delivery systems for slow release of pediocin. BioNanoScience. 2013;3:37–42.

    Article  Google Scholar 

  22. Manosroi A, Podjanasoonthon K, Manosroi J. Stability and release of topical tranexamic acid liposome formulations. J Cosmet Sci. 2002;53:375–86.

    CAS  PubMed  Google Scholar 

  23. Bo HU, Yao W, Liu N. Optimization of preparation condition for procyanidine liposomes. J Northeast Agric Univ. 2010;41:106–11.

    Google Scholar 

  24. Saeed Ghanbarzadeh ZM. Application of response surface methodology in development of sirolimus liposomes prepared by thin film hydration technique. Bioimpacts. 2013;3:75–81.

    PubMed  PubMed Central  Google Scholar 

  25. Amstad E, Kohlbrecher J, Müller E, Schweizer T, Textor M, Reimhult E. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett. 2011;11:1664–70.

    Article  CAS  PubMed  Google Scholar 

  26. Nasr M, Nawaz S, Elhissi A. Amphotericin B lipid nanoemulsion aerosols for targeting peripheral respiratory airways via nebulization. Int J Pharm. 2012;436:611–6.

    Article  CAS  PubMed  Google Scholar 

  27. Adlermooreand JP, Proffitt RT. Development, characterization, efficacy and mode of action of ambisome, a unilamellar liposomal formulation of amphotericin B. J Liposome Res. 2008;3:429–50.

    Article  Google Scholar 

  28. Rathodand S, Deshpande SG. Design and evaluation of liposomal formulation of pilocarpine nitrate. Indian J Pharm Sci. 2010;72:155–60.

    Article  Google Scholar 

  29. Jain S, Mittal A, Jain AK, Mahajan RR, Singh D. Cyclosporin A loaded PLGA nanoparticle: preparation, optimization, in-vitro characterization and stability studies. Curr Nanosci. 2010;6:422–431(410).

    Article  CAS  Google Scholar 

  30. M. Wong. Preparation of uniformly sized liposomes encapsulating an aqueous liquid, US 1991.

  31. Yamabe K, Kato Y, Onishi H, Machida Y. In vitro characteristics of liposomes and double liposomes prepared using a novel glass beads method. J Control Release. 2003;90:71.

    Article  CAS  PubMed  Google Scholar 

  32. Dimitrov DS, Li J, Angelova M, Jain RK. Surface effects in preparation of cell-size liposomes. FEBS Lett. 1984;176:398–400.

    Article  CAS  Google Scholar 

  33. Gaber MH, Hong K, Huang SK, Papahadjopoulos D. Thermosensitive sterically stabilized liposomes: formulation and in vitro studies on mechanism of doxorubicin release by bovine serum and human plasma. Pharm Res. 1995;12:1407–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to the National Key Research and Development Plan (No. 2016YFA0201501) for supporting the current project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qipeng Yuan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Ahmad, A., Ullah, S. et al. A Cheap and Convenient Method of Liposome Preparation Using Glass Beads as a Source of Shear Force. AAPS PharmSciTech 18, 3227–3235 (2017). https://doi.org/10.1208/s12249-017-0812-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0812-3

KEY WORDS

Navigation