Skip to main content

Advertisement

Log in

Zolendronic Acid-Conjugated PLGA Ultrasmall Nanoparticle Loaded with Methotrexate as a Supercarrier for Bone-Targeted Drug Delivery

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Drug delivery to deep-seated tissues such as bone has been a major complication till date. This preferential drug delivery is further important in targeting anti-tumour agents to bone metastasis owing to its complexity. The present study involves the formulation of PLGA nanoparticles and conjugation with zolendronic acid—a bisphosphonate which will anchor the nanosystem to bone due to its selective bone affinity. The conjugated nanosystem was characterized for particle size by TEM (average 36 nm) and morphology by AFM depicting surface irregularities due to ZOL conjugation on the surface of nanoparticles. NMR spectral data also showed the involvement of terminal -OH group of PLGA in bond formation with ZOL. Bone localization studies showed higher accumulation of the ZOL-conjugated nanosystem in bone than non-conjugated nanoparticles. This was confirmed with bone mineral affinity and specificity assay wherein the conjugated nanosystem was found to selectively bind to hydroxyapatite in comparison to other bone minerals. The biodistribution studies depicted that the conjugated nanosystem was selectively targeted to the bone area with concentrations of methotrexate reaching up to 127.4 ± 1.41 μg in 1 h. Hence, this multipronged approach using (1) ultrasmall size of nanoparticles, (2) bone selective polymer and (3) suitable bone-targeting agent resulted in mutual synergism for the specific delivery of the anti-tumour agent to the bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Singh V, Haseeb A, Alkubaisi A. Incidence and outcome of bone metastatic disease at University Malaya Medical Centre. Singapore J Med. 2014;55(10):539–46.

    Article  Google Scholar 

  2. Hosain F, Spencer R, Couthon H, et al. Targeted delivery of antineoplastic agent to bone: biodistribution studies of technetium-99m-labeled gem-bisphosphonate conjugate of methotrexate. J Nucl Med. 1996;37:105–7. doi:10.1002/cncr.26336.

    CAS  PubMed  Google Scholar 

  3. Torchilin V. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov. 2014;13(11):813–27. doi:10.1038/nrd4333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hirabayashi H, Fujisaki J. Bone-specific drug delivery systems: approaches via chemical modification of bone-seeking agents. Clin Pharmacokinetics. 2003;42(15):1319–30. doi:10.2165/00003088-200342150-00002.

    Article  CAS  Google Scholar 

  5. Huober J, Thürlimann B. Bone targeted therapy in breast cancer: present and future. Crit Rev Oncol Hematol. 2010;74:S7–S10. doi:10.1016/S1040-8428(10)70004-4.

    Article  PubMed  Google Scholar 

  6. De Rosa G, Misso G, Salzano G, et al. Bisphosphonates and cancer: what opportunities from nanotechnology?. J Drug Deliv. 2013;1–17. doi:10.1155/2013/637976.

  7. Sturtz G, Couthon H, Fabulet O, Mian M, Rosini S. Synthesis of gem-bisphosphonic methotrexate conjugates and their biological response towards Walker’s osteosarcoma. Eur J Med Chem. 1993;28:899–903. doi:10.1016/0223-5234(93)90043-E.

    Article  CAS  Google Scholar 

  8. Wu G, Chen J, Xiao Y. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int J Nanomedicine. 2013;8:2305–17. doi:10.2147/IJN.S44393.

    PubMed  PubMed Central  Google Scholar 

  9. Low S, Kopeček J. Targeting polymer therapeutics to bone. Adv Drug Deliv Rev. 2012;64(12):1189–204. doi:10.1016/j.addr.2012.01.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang D, Miller S, Kopecek P, Kopecek J. Bone-targeting macromolecular therapeutics. Adv Drug Deliv Rev. 2005;57(7):1049–76. doi:10.1016/j.addr.2004.12.011.

    Article  CAS  PubMed  Google Scholar 

  11. Raichur V, Devi V. Formulation and evaluation of osteotropic drug delivery system of methotrexate with a potential for passive bone targeting. J Pharm Investig. 2016;1–13. doi:10.1007/s40005-016-0265-9.

  12. Thamake S, Raut S, Gryczynski Z, et al. Alendronate coated poly-lactic-co-glycolic acid (PLGA) nanoparticles for active targeting of metastatic breast cancer. Biomaterials. 2012;33(29):7164–73. doi:10.1016/j.biomaterials.2012.06.026.

    Article  CAS  PubMed  Google Scholar 

  13. Maheswara Reddy L, Janardhan Reddy K, Raveendra Reddy P. A simple RP-HPLC method for related substances of zoledronic acid in pharmaceutical products. Arab J Chem. 2012. doi:10.1016/j.arabjc.2012.07.022.

    Google Scholar 

  14. Raichur V, Khanum A, Pandit V, Patel M, Rahman A. Formulation and development of taste masked orally disintegrating tablets (ODTs) of cefpodoxime proxetil using ion exchange resins. Indo Am J Pharm Res. 2014;4(1):151–65.

    Google Scholar 

  15. Bhandari K, Newa M, Uludag H, et al. Synthesis, characterization and in vitro evaluation of a bone targeting delivery system for salmon calcitonin. Int J Pharm. 2010;394(1–2):26–34. doi:10.1016/j.ijpharm.2010.04.015.

    Article  CAS  PubMed  Google Scholar 

  16. Ramanlal Chaudhari K, Kumar A, Megraj Khandelwal V, Ukawala M, Manjappa A, Mishra A, et al. Bone metastasis targeting: a novel approach to reach bone using zoledronate anchored PLGA nanoparticle as carrier system loaded with docetaxel. J Control Release. 2012;158(3):470–8. doi:10.1016/j.jconrel.2011.11.020.

    Article  CAS  PubMed  Google Scholar 

  17. Van der Pluijm G, Van Beek E, Löwik C, Papapoulos S. Bisphosphonates inhibit the adhesion of breast cancer cells to bone in vitro. Bone. 1995;17(6):617. doi:10.1172/JCI118841.

    Article  Google Scholar 

  18. Jain A, Jain A, Garg N, Tyagi R, Singh B, Katare O, et al. Surface engineered polymeric nanocarriers mediate the delivery of transferrin–methotrexate conjugates for an improved understanding of brain cancer. Acta Biomater. 2015;24:140–51. doi:10.1016/j.actbio.2015.06.027.

    Article  CAS  PubMed  Google Scholar 

  19. Sperling R, Parak W. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans Royal Soc A: Math Phys Eng Sci. 2010;368(1915):1333–83. doi:10.1098/rsta.2009.0273.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to ICMR (Indian Council of Medical Research, Govt of India, New Delhi) for providing financial assistance in the form of research fellowship (45/16/2014-Nan/BMS). The authors are obliged to Machen Product India Pvt. Ltd. (Mumbai), India, for providing the gift sample of MTX and ZOL and Evonik India for the gift sample of PLGA. Special thanks to Mount Carmel Institute, Bangalore for carrying out AFM analysis. The authors also acknowledge the assistance of Mr Venketesh (Bangalore Institute of Technology) and STIC, Cochin for carrying out the IR and NMR analysis, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kusum Devi Vemula.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raichur, V., Vemula, K., Bhadri, N. et al. Zolendronic Acid-Conjugated PLGA Ultrasmall Nanoparticle Loaded with Methotrexate as a Supercarrier for Bone-Targeted Drug Delivery. AAPS PharmSciTech 18, 2227–2239 (2017). https://doi.org/10.1208/s12249-016-0691-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0691-z

KEY WORDS

Navigation