Skip to main content

Advertisement

Log in

In Vitro and In Vivo Performance of Dry Powder Inhalation Formulations: Comparison of Particles Prepared by Thin Film Freezing and Micronization

  • Research Article
  • Theme: Advances in Formulation and Device Technologies for Pulmonary Drug Delivery
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Recently, inhaled immunosuppressive agents have attracted increasing attention for maintenance therapy following lung transplantation. The rationale for this delivery approach includes a more targeted and localized delivery to the diseased site with reduced systemic exposure, potentially leading to decreased adverse side effects. In this study, the in vitro and in vivo performance of an amorphous formulation prepared by thin film freezing (TFF) and a crystalline micronized formulation produced by milling was compared for tacrolimus (TAC). Despite the relatively large geometric size, the TFF-processed formulation was capable of achieving deep lung delivery due to its low-density, highly porous, and brittle characteristics. When emitted from a Miat® monodose inhaler, TFF-processed TAC formulations exhibited a fine particle fraction (FPF) of 83.3% and a mass median aerodynamic diameter (MMAD) of 2.26 μm. Single-dose 24-h pharmacokinetic studies in rats demonstrated that the TAC formulation prepared by TFF exhibited higher pulmonary bioavailability with a prolonged retention time in the lung, possibly due to decreased clearance (e.g., macrophage phagocytosis), compared to the micronized TAC formulation. Additionally, TFF formulation generated a lower systemic TAC concentration with smaller variability than the micronized formulation following inhalation, potentially leading to reduced side effects related to the drug in systemic circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Yusen RD, Christie JD, Edwards LB, Kucheryavaya AY, Benden C, Dipchand AI, et al. The registry of the international society for heart and lung transplantation: thirtieth adult lung and heart-lung transplant report-2013; focus theme: age. J Heart Lung Transplant. 2013;32(10):965–78.

    Article  PubMed  Google Scholar 

  2. Boehler A, Estenne M. Obliterative bronchiolitis after lung transplantation. Curr Opin Pulm Med. 2000;6:133–9.

    Article  CAS  PubMed  Google Scholar 

  3. Knoop C, Haverich A, Fischer S. Immunosuppressive therapy after human lung transplantation. Eur Respir J. 2004;23(1):159–71.

    Article  CAS  PubMed  Google Scholar 

  4. Watts AB, Peters JI, Talbert RL, O’Donnell KP, Coalson JJ, Williams 3rd RO. Preclinical evaluation of tacrolimus colloidal dispersion for inhalation. Eur J Pharm Biopharm. 2011;77(2):207–15.

    Article  CAS  PubMed  Google Scholar 

  5. Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama M, Yajima T, et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot (Tokyo). 1987;40(9):1256–65.

    Article  CAS  Google Scholar 

  6. Hariharan S, Peddi VR, Munda R, Demmy AM, Schroeder TJ, Alexander JW, et al. Long-term renal and pancreas function with tacrolimus rescue therapy following kidney/pancreas transplantation. Transplant Proc. 1997;29(1–2):652–3.

    Article  CAS  PubMed  Google Scholar 

  7. Keenan RJ, Konishi H, Kawai A, Paradis IL, Nunley DR, Iacono AT, et al. Clinical trial of tacrolimus versus cyclosporine in lung transplantation. Ann Thorac Surg. 1995;60(3):580–4. discussion 4–5.

    Article  CAS  PubMed  Google Scholar 

  8. O’Grady JG, Burroughs A, Hardy P, Elbourne D, Truesdale A, Uk, et al. Tacrolimus versus microemulsified ciclosporin in liver transplantation: the TMC randomised controlled trial. Lancet. 2002;360(9340):1119–25.

    Article  PubMed  Google Scholar 

  9. Knoop C, Thiry P, Saint-Marcoux F, Rousseau A, Marquet P, Estenne M. Tacrolimus pharmacokinetics and dose monitoring after lung transplantation for cystic fibrosis and other conditions. Am J Transplant. 2005;5(6):1477–82.

    Article  CAS  PubMed  Google Scholar 

  10. Wagner K, Webber SA, Kurland G, Boyle GJ, Miller SA, Cipriani L, et al. New-onset diabetes mellitus in pediatric thoracic organ recipients receiving tacrolimus-based immunosuppression. J Heart Lung Transplant. 1997;16(3):275–82.

    CAS  PubMed  Google Scholar 

  11. Corcoran TE. Inhaled delivery of aerosolized cyclosporine. Adv Drug Deliv Rev. 2006;58(9–10):1119–27.

    Article  CAS  PubMed  Google Scholar 

  12. Groves S, Galazka M, Johnson B, Corcoran T, Verceles A, Britt E, et al. Inhaled cyclosporine and pulmonary function in lung transplant recipients. J Aerosol Med Pulm Drug Deliv. 2010;23(1):31–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Onoue S, Sato H, Kawabata Y, Mizumoto T, Hashimoto N, Yamada S. In vitro and in vivo characterization on amorphous solid dispersion of cyclosporine A for inhalation therapy. J Control Release. 2009;138(1):16–23.

    Article  CAS  PubMed  Google Scholar 

  14. Onoue S, Sato H, Ogawa K, Kojo Y, Aoki Y, Kawabata Y, et al. Inhalable dry-emulsion formulation of cyclosporine A with improved anti-inflammatory effects in experimental asthma/COPD-model rats. Eur J Pharm Biopharm. 2012;80(1):54–60.

    Article  CAS  PubMed  Google Scholar 

  15. Wang T, Noonberg S, Steigerwalt R, Lynch M, Kovelesky RA, Rodriguez CA, et al. Preclinical safety evaluation of inhaled cyclosporine in propylene glycol. J Aerosol Med. 2007;20(4):417–28.

    Article  PubMed  Google Scholar 

  16. Behr J, Zimmermann G, Baumgartner R, Leuchte H, Neurohr C, Brand P, et al. Lung deposition of a liposomal cyclosporine A inhalation solution in patients after lung transplantation. J Aerosol Med Pulm Drug Deliv. 2009;22(2):121–30.

    Article  CAS  PubMed  Google Scholar 

  17. Iacono AT, Johnson BA, Grgurich WF, Youssef JG, Corcoran TE, Seiler DA, et al. A randomized trial of inhaled cyclosporine in lung-transplant recipients. N Engl J Med. 2006;354(2):141–50.

    Article  PubMed  Google Scholar 

  18. Ide N, Nagayasu T, Matsumoto K, Tagawa T, Tanaka K, Taguchi T, et al. Efficacy and safety of inhaled tacrolimus in rat lung transplantation. J Thorac Cardiovasc Surg. 2007;133(2):548–53.

    Article  PubMed  Google Scholar 

  19. Ingu A, Komatsu K, Ichimiya S, Sato N, Hirayama Y, Morikawa M, et al. Effects of inhaled FK 506 on the suppression of acute rejection after lung transplantation: use of a rat orthotopic lung transplantation model. J Heart Lung Transplant. 2005;24(5):538–43.

    Article  PubMed  Google Scholar 

  20. Morishita Y, Hirayama Y, Miyayasu K, Tabata K, Kawamura A, Ohkubo Y, et al. FK506 aerosol locally inhibits antigen-induced airway inflammation in guinea pigs. Int Arch Allergy Immunol. 2005;136(4):372–8.

    Article  CAS  PubMed  Google Scholar 

  21. Deuse T, Blankenberg F, Haddad M, Reichenspurner H, Phillips N, Robbins RC, et al. Mechanisms behind local immunosuppression using inhaled tacrolimus in preclinical models of lung transplantation. Am J Respir Cell Mol Biol. 2010;43(4):403–12.

    Article  CAS  PubMed  Google Scholar 

  22. Schrepfer S, Deuse T, Reichenspurner H, Hoffmann J, Haddad M, Fink J, et al. Effect of inhaled tacrolimus on cellular and humoral rejection to prevent posttransplant obliterative airway disease. Am J Transplant. 2007;7(7):1733–42.

    Article  CAS  PubMed  Google Scholar 

  23. Sinswat P, Overhoff KA, McConville JT, Johnston KP, Williams 3rd RO. Nebulization of nanoparticulate amorphous or crystalline tacrolimus–single-dose pharmacokinetics study in mice. Eur J Pharm Biopharm. 2008;69(3):1057–66.

    Article  CAS  PubMed  Google Scholar 

  24. Watts AB, Cline AM, Saad AR, Johnson SB, Peters JI, Williams 3rd RO. Characterization and pharmacokinetic analysis of tacrolimus dispersion for nebulization in a lung transplanted rodent model. Int J Pharm. 2010;384(1–2):46–52.

    Article  CAS  PubMed  Google Scholar 

  25. Chougule M, Padhi B, Misra A. Nano-liposomal dry powder inhaler of tacrolimus: preparation, characterization, and pulmonary pharmacokinetics. Int J Nanomedicine. 2007;2(4):675–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Watts AB, Wang YB, Johnston KP, Williams 3rd RO. Respirable low-density microparticles formed in situ from aerosolized brittle matrices. Pharm Res. 2013;30(3):813–25.

    Article  CAS  PubMed  Google Scholar 

  27. Edwards DA, Hanes J, Caponetti G, Hrkach J, Ben-Jebria A, Eskew ML, et al. Large porous particles for pulmonary drug delivery. Science. 1997;276(5320):1868–71.

    Article  CAS  PubMed  Google Scholar 

  28. Vanbever R, Mintzes JD, Wang J, Nice J, Chen D, Batycky R, et al. Formulation and physical characterization of large porous particles for inhalation. Pharm Res. 1999;16(11):1735–42.

    Article  CAS  PubMed  Google Scholar 

  29. Dellamary LA, Tarara TE, Smith DJ, Woelk CH, Adractas A, Costello ML, et al. Hollow porous particles in metered dose inhalers. Pharm Res. 2000;17(2):168–74.

    Article  CAS  PubMed  Google Scholar 

  30. Duddu SP, Sisk SA, Walter YH, Tarara TE, Trimble KR, Clark AR, et al. Improved lung delivery from a passive dry powder inhaler using an engineered PulmoSphere powder. Pharm Res. 2002;19(5):689–95.

    Article  CAS  PubMed  Google Scholar 

  31. Richardson PC, Boss AH. Technosphere insulin technology. Diabetes Technol Ther. 2007;9 Suppl 1:S65–72.

    CAS  PubMed  Google Scholar 

  32. Plumley C, Gorman EM, El-Gendy N, Bybee CR, Munson EJ, Berkland C. Nifedipine nanoparticle agglomeration as a dry powder aerosol formulation strategy. Int J Pharm. 2009;369(1–2):136–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Geiser M. Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med Pulm Drug Deliv. 2010;23(4):207–17.

    Article  CAS  PubMed  Google Scholar 

  34. Yang W, Johnston KP, Williams 3rd RO. Comparison of bioavailability of amorphous versus crystalline itraconazole nanoparticles via pulmonary administration in rats. Eur J Pharm Biopharm. 2010;75(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  35. Olsson B, Bondesson E, Borgstrom L. Pulmonary drug metabolism, clearance, and absorption. In: Controlled pulmonary drug delivery [Internet]. New York, NY: Springer; 2011. 1. Available from: doi:10.1007/978-1-4419-9745-6.

  36. Mobley C, Hochhaus G. Methods used to assess pulmonary deposition and absorption of drugs. Drug Discov Today. 2001;6(7):367–75.

    Article  CAS  PubMed  Google Scholar 

  37. Esmailpour N, Hogger P, Rabe KF, Heitmann U, Nakashima M, Rohdewald P. Distribution of inhaled fluticasone propionate between human lung tissue and serum in vivo. Eur Respir J. 1997;10(7):1496–9.

    Article  CAS  PubMed  Google Scholar 

  38. Thorsson L, Edsbacker S, Kallen A, Lofdahl CG. Pharmacokinetics and systemic activity of fluticasone via Diskus and pMDI, and of budesonide via Turbuhaler. Br J Clin Pharmacol. 2001;52(5):529–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Engstrom JD, Lai ES, Ludher BS, Chen B, Milner TE, Williams 3rd RO, et al. Formation of stable submicron protein particles by thin film freezing. Pharm Res. 2008;25(6):1334–46.

    Article  CAS  PubMed  Google Scholar 

  40. Ball DJ, Hirst PH, Newman SP, Sonet B, Streel B, Vanderbist F. Deposition and pharmacokinetics of budesonide from the Miat Monodose inhaler, a simple dry powder device. Int J Pharm. 2002;245(1–2):123–32.

    Article  CAS  PubMed  Google Scholar 

  41. Mitchell JP. Practices of coating collection surfaces of cascade impactors: a survey of members of the European Pharmaceutical Aerosol Group (EPAG). Drug Deliv Lung. 2003;14:75–8.

    Google Scholar 

  42. Marple VA, Olson BA, Santhanakrishnan K, Mitchell JP, Murray SC, Hudson-Curtis BL. Next generation pharmaceutical impactor (a new impactor for pharmaceutical inhaler testing). Part II: Archival calibration. J Aerosol Med. 2003;16(3):301–24.

    Article  PubMed  Google Scholar 

  43. Moyano MA, Simionato LD, Pizzorno MT, Segall AI. Validation of a liquid chromatographic method for determination of tacrolimus in pharmaceutical dosage forms. J AOAC Int. 2006;89(6):1547–51.

    CAS  PubMed  Google Scholar 

  44. USP 32-NF 27 General Chapter 601: Aerosols, nasal sprays, metered-dose inhalers, and dry powder inhalers. 218–39.

  45. Gombás A, Szabó-Révész P, Kata M, RJ G, Erõs I. Quantitative determination of crystallinity of a-lactose monohydrate by DSC. J Therm Anal Calorim. 2002;68:503–10.

    Article  Google Scholar 

  46. Hilden LR, Morris KR. Physics of amorphous solids. J Pharm Sci. 2004;93(1):3–12.

    Article  CAS  PubMed  Google Scholar 

  47. Deng Z, Xu S, Li S. Understanding a relaxation behavior in a nanoparticle suspension for drug delivery applications. Int J Pharm. 2008;351(1–2):236–43.

    Article  CAS  PubMed  Google Scholar 

  48. Kim AI, Akers MJ, Nail SL. The physical state of mannitol after freeze-drying: effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute. J Pharm Sci. 1998;87(8):931–5.

    Article  CAS  PubMed  Google Scholar 

  49. Zidan AS, Rahman Z, Sayeed V, Raw A, Yu L, Khan MA. Crystallinity evaluation of tacrolimus solid dispersions by chemometric analysis. Int J Pharm. 2012;423(2):341–50.

    Article  CAS  PubMed  Google Scholar 

  50. Zhao M, Barker SA, Belton PS, McGregor C, Craig DQ. Development of fully amorphous dispersions of a low T(g) drug via co-spray drying with hydrophilic polymers. Eur J Pharm Biopharm. 2012;82(3):572–9.

    Article  CAS  PubMed  Google Scholar 

  51. Rasenack N, Muller BW. Micron-size drug particles: common and novel micronization techniques. Pharm Dev Technol. 2004;9(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  52. Saleem IY, Smyth HD. Micronization of a soft material: air-jet and micro-ball milling. AAPS PharmSciTech. 2010;11(4):1642–9.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Rogueda PG, Traini D. The nanoscale in pulmonary delivery. Part 1: deposition, fate, toxicology and effects. Expert Opin Drug Deliv. 2007;4(6):595–606.

    Article  CAS  PubMed  Google Scholar 

  54. de Villiers MM. Influence of cohesive properties of micronized drug powders on particle size analysis. J Pharm Biomed Anal. 1995;13(3):191–8.

    Article  PubMed  Google Scholar 

  55. Byron PR. Prediction of drug residence times in regions of the human respiratory tract following aerosol inhalation. J Pharm Sci. 1986;75(5):433–8.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang J, Wu L, Chan HK, Watanabe W. Formation, characterization, and fate of inhaled drug nanoparticles. Adv Drug Deliv Rev. 2011;63(6):441–55.

    Article  CAS  PubMed  Google Scholar 

  57. Alexander DJ, Collins CJ, Coombs DW, Gilkison IS, Hardy CJ, Healey G, et al. Association of Inhalation Toxicologists (AIT) working party recommendation for standard delivered dose calculation and expression in non-clinical aerosol inhalation toxicology studies with pharmaceuticals. Inhal Toxicol. 2008;20(13):1179–89.

    Article  CAS  PubMed  Google Scholar 

  58. Kuehl PJ, Anderson TL, Candelaria G, Gershman B, Harlin K, Hesterman JY, et al. Regional particle size dependent deposition of inhaled aerosols in rats and mice. Inhal Toxicol. 2012;24(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  59. Edwards DA, Ben-Jebria A, Langer R. Recent advances in pulmonary drug delivery using large, porous inhaled particles. J Appl Physiol. 1998;85(2):379–85.

    CAS  PubMed  Google Scholar 

  60. Lehnert BE, Morrow PE. Association of 59iron oxide with alveolar macrophages during alveolar clearance. Exp Lung Res. 1985;9(1–2):1–16.

    Article  CAS  PubMed  Google Scholar 

  61. Venkataramanan R, Shaw LM, Sarkozi L, Mullins R, Pirsch J, MacFarlane G, et al. Clinical utility of monitoring tacrolimus blood concentrations in liver transplant patients. J Clin Pharmacol. 2001;41(5):542–51.

    Article  CAS  PubMed  Google Scholar 

  62. Shin SB, Cho HY, Kim DD, Choi HG, Lee YB. Preparation and evaluation of tacrolimus-loaded nanoparticles for lymphatic delivery. Eur J Pharm Biopharm. 2010;74(2):164–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert O. Williams III.

Additional information

Guest Editors: Paul B. Myrdal and Steve W. Stein

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YB., Watts, A.B., Peters, J.I. et al. In Vitro and In Vivo Performance of Dry Powder Inhalation Formulations: Comparison of Particles Prepared by Thin Film Freezing and Micronization. AAPS PharmSciTech 15, 981–993 (2014). https://doi.org/10.1208/s12249-014-0126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0126-7

KEY WORDS

Navigation