Skip to main content
Log in

Challenges with Developing In Vitro Dissolution Tests for Orally Inhaled Products (OIPs)

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this article is to review the suitability of the analytical and statistical techniques that have thus far been developed to assess the dissolution behavior of particles in the respirable aerodynamic size range, as generated by orally inhaled products (OIPs) such as metered-dose inhalers and dry powder inhalers. The review encompasses all analytical techniques publicized to date, namely, those using paddle-over-disk USP 2 dissolution apparatus, flow-through cell dissolution apparatus, and diffusion cell apparatus. The available techniques may have research value for both industry and academia, especially when developing modified-release formulations. The choice of a method should be guided by the question(s) that the research strives to answer, as well as by the strengths and weaknesses of the available techniques. There is still insufficient knowledge, however, for translating the dissolution data into statements about quality, performance, safety, or efficacy of OIPs in general. Any attempts to standardize a dissolution method for compendial inclusion or compendial use would therefore be premature. This review reinforces and expands on the 2008 stimulus article of the USP Inhalation Ad Hoc Advisory Panel, which “could not find compelling evidence suggesting that such dissolution testing is kinetically and/or clinically crucial for currently approved inhalation drug products.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

ACI:

Andersen Cascade Impactor

API:

active pharmaceutical ingredient

APSD:

aerodynamic particle size distribution

BDP:

beclomethasone dipropionate

COPD:

chronic obstructive pulmonary disease

DDW:

double distilled water

DPI:

dry powder inhaler

DPPC:

dipalmitoylphosphatidylcholine

ELF:

epithelial lung fluid

FP:

fluticasone propionate

ICS:

inhaled corticosteroid

IPAC-RS:

International Pharmaceutical Aerosol Consortium on Regulation and Science

IVIVC:

in vivo in vitro correlation

LABA:

long-acting beta agonist

MDI:

metered dose inhaler

NGI:

Next Generation Pharmaceutical Impactor

OIP:

orally inhaled product

PBS:

phosphate-buffered saline

PC:

phosphatidylcholine

PD:

pharmacodynamic

PK:

pharmacokinetic

PVDF:

polyvinylidene difluoride

SLF:

simulated lung fluid

USP:

US Pharmacopeia

REFERENCES

  1. US FDA CDER. Guidance for Industry: Dissolution testing of immediate release solid oral dosage forms. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070237.pdf (1997). Accessed 4 Oct 2011.

  2. US FDA CDER. Guidance for Industry: Extended release oral dosage forms: Development, Evaluation and Application of In Vitro/In Vivo Correlations. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070239.pdf (1997). Accessed 4 Oct 2011.

  3. US FDA CDER. Draft guidance: metered dose inhaler (MDI) and dry powder inhaler (DPI) drug products chemistry, manufacturing and controls documentation. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070573.pdf (1998). Accessed 4 Oct 2011.

  4. US FDA CDER. Nasal spray and inhalation solution, suspension, and spray drug products chemistry, manufacturing, and controls documentation. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070575.pdf (2002). Accessed 4 Oct 2011.

  5. Joint EMA and Health Canada Guidance. Pharmaceutical quality of inhalation and nasal products. http://www.hc-sc.gc.ca/dhp-mps/prodpharma/applic-demande/guide-ld/chem/inhalationnas-eng.php (2006); EMEA/CHMP/QWP/49313/2005 Corr http://www.emea.europa.eu/pdfs/human/qwp/4931305en.pdf (2006). Accessed 3 Oct 2011.

  6. US FDA CDRH. Reviewer guidance for nebulizers, metered dose inhalers, spacers and actuators. http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm081282.htm (1993). Accessed 4 Oct 2011.

  7. US FDA CDER. Guidance for the in vitro portion of bioequivalence requirements for metaproterenol sulfate and albuterol inhalation aerosols (metered dose inhalers). http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070242.pdf (1989). Accessed 4 Oct 2011.

  8. Lee SL, Adams WP, Li BV, Conner DP, Chowdhury BA, Yu LX. In vitro considerations to support bioequivalence of locally acting drugs in dry powder inhalers for lung diseases. AAPS J. 2009;11:414–23.

    Article  PubMed  CAS  Google Scholar 

  9. EMA. Guideline on the requirements for clinical documentation for orally inhaled products (OIP) including the requirements for demonstration of therapeutic equivalence between two inhaled products for use in the treatment of asthma and chronic obstructive pulmonary disease (COPD) in adults and for treatment of asthma in children and adolescents. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003504.pdf (2009). Accessed 4 Oct 2011.

  10. Health Canada Draft Guidance Document: submission requirements for subsequent market entry inhaled corticosteroid products for use in the treatment of asthma. http://www.hc-sc.gc.ca/dhp-mps/prodpharma/applic-demande/guide-ld/inhal_corticost-eng.php (2007). Accessed 4 Oct 2011.

  11. Newman SP, Chan HK. In vitro/in vivo comparisons in pulmonary drug delivery. J Aerosol Med. 2007;20(2):211.

    Google Scholar 

  12. Dunbar C, Mitchell J. Analysis of cascade impaction mass distributions. J Aerosol Med. 2005;18(4):439–51.

    Article  PubMed  CAS  Google Scholar 

  13. Kreyling WG, Scheuch G. Clearance of particles deposited in the lungs. In: Gehr P, Heyder J, editors. Particle–lung interactions. 2nd ed. New York: Marcel Dekker; 2009. p. 323–75.

    Google Scholar 

  14. Gray VA, Hickey AJ, Balmer P, Davies NM, Dunbar C, Foster TS, Olsson BL, Sakagami M, Shah V, Smurthwaite MJ, Veranth JM, Zaidi K. The inhalation ad hoc advisory panel for the USP performance tests of inhalation dosage forms. Pharm Forum. 2008;34(4):1068–74.

    Google Scholar 

  15. Brown CK, Friedel HD, Barker AR, Buhse LF, Keitel S, Cecil TL, Kraemer J, Morris JM, Reppas C, Stickelmeyer MP, Yomota C, and Shah VP. FIP/AAPS Joint Workshop Report: dissolution/in vitro testing of novel/special dosage forms. AAPS PharmSciTech. 2011;12(2). doi:10.1208/s12249-011-9634-x.

  16. Arora D, Shah KA, Halquist MS, Sakagami M. In vitro aqueous fluid-capacity-limited dissolution testing of respirable aerosol drug particles generated from inhaler products. Pharm Res. 2010;27:786–95. doi:10.1007/s11095-010-0070-5.

    Article  PubMed  CAS  Google Scholar 

  17. Copley M, Son Y-J, McConville J. Dissolution testing of inhaled drugs. Pharm Technology Europe. 2010; 22(11). http://www.copleyscientific.co.uk/documents/ww/COP%20JOB%20103_Dissolution%20testing%20for%20inhaled%20drugs.pdf and http://pharmtech.findpharma.com/pharmtech/article/articleDetail.jsp?id=692804&sk=&date=&pageID=3 Accessed 2 Nov 2011.

  18. Son Y-J, Horng M, Copley M, McConville JT. Optimization of an in vitro dissolution test method for inhalation formulations. Dissolut Technol. 2010;17:6–13. http://www.dissolutiontech.com/DTresour/201005Articles/DT201005_A01.pdf Accessed 2 Nov 2011.

    Google Scholar 

  19. Son Y-J, McConville JT. Development of a standardized dissolution test method for inhaled pharmaceutical formulations. Int J Pharm. 2009;382:15–22. doi:10.1016/j.ijpharm.2009.07.034.

    Article  PubMed  CAS  Google Scholar 

  20. Davies NM, Feddah MR. A novel method for assessing dissolution of aerosol inhaler products. Int J Pharm. 2003;255:175–87. doi:10.1016/S0378-5173(03)00091-7.

    Article  PubMed  CAS  Google Scholar 

  21. Riley T, Jones A, Bogalo Huescar M, Roche T. In vitro method for determining the dissolution rate of inhalation aerosols. Poster at RDD 2008. Abstract in RDD 2008;2:541–4.

  22. Mees J, Fulton C, Wilson S, Bramwell N, Lucius M, Cooper A. Development of dissolution methodology for dry powder inhalation aerosols. Poster at IPAC-RS 2011. http://ipacrs.com/posters2011.html Accessed 4 Nov 2011.

  23. Bicer EM, Forbes B, Somers G, Blomberg A, Behndig A, Mudway A. Characterising the composition of human respiratory tract lining fluids in health and disease in Drug Delivery to the Lungs 22 Proceedings; 2011 Dec 7-9; Edinburgh, UK. Portishead, UK: The Aerosol Society, p. 82–84.

  24. Marques MRC, Loebenberg R, Almunkainzi M. Simulated biological fluids with possible application in dissolution testing. Dissolution Technol. 2011;18(3):15–28.

    CAS  Google Scholar 

  25. Griese M. Pulmonary surfactant in health and human lung diseases: state of the art. Eur Respir J. 1999;13(6):1455–76.

    Article  PubMed  CAS  Google Scholar 

  26. Colombani-Dauvergne AC, Burrows JL, Humphrey M, Mitchell JC, Snowden MJ. A novel measurement of the dissolution rates of low solubility compounds. DDL 17 Proceedings. 2006;121–4.

  27. Hein S, Bur M, Schaefer UF, Lehr CM. A new pharmaceutical aerosol deposition device on cell cultures (PADDOCC) to evaluate pulmonary drug absorption for metered dose dry powder formulations. Eur J Pharmacol Biopharmacol. 2011;77:132–8.

    Article  CAS  Google Scholar 

  28. Grainger CI, Greenwell LL, Martin GP, Forbes B. The permeability of large molecular weight solutes following particle delivery to air-interfaced cells that model the respiratory mucosa. Eur J Pharm Biopharm. 2009;71(2):318–24.

    Article  PubMed  CAS  Google Scholar 

  29. Salama RO, Traini D, Chan HK, Sung A, Ammit AJ, Young PM. Preparation and evaluation of controlled release microparticles for respiratory protein therapy. J Pharm Sci. 2009;98(8):2709–17.

    Article  PubMed  CAS  Google Scholar 

  30. Jensen B, Reiners M, Wolkenhauer M, Ritzheim P, May S, Schneider M, Lehr CM. Dissolution testing for inhaled products. RDD Europe 2011;2:303–8.

    Google Scholar 

  31. Reiners M, Jensen B, Wolkenhauer M, Ritzheim P, Egen M. Dissolution testing for inhaled products. Poster at IPAC-RS 2011. http://ipacrs.com/posters2011.html Accessed 4 Nov 2011.

  32. Salama R, Traini D, Chan H-K, Young PM. Preparation and characterisation of controlled release co-spray dried drug–polymer microparticles for inhalation. 2: evaluation of in vitro release profiling methodologies for controlled release respiratory aerosols. Eur J Pharmacol Biopharm. 2008;70:145–52. doi:10.1016/j.ejpb.2008.04.009.

    Article  CAS  Google Scholar 

  33. United States Pharmacopeia. Reference tables: description and solubility. First supplement to USP34-NF29. 2011;4837–93.

  34. Young PM, Traini D, Salama RO. In Vitro Techniques Equipped to Study Clinically Relevant Controlled Release Products. Poster at RDD Europe 2011. Abstract available in: RDD Europe 2011;1:79–88.

  35. Coowanitwong I, Arya V, Patel G, Kim W-S, Cracum V, Rocca JR, Singh R, Hochhaus G. Laser-ablated nanofunctional polymers for the formulation of slow-release powders for dry powder inhalers: physicochemical characterization and slow-release characteristics. J Pharm Pharmacol. 2007;59:1473–84.

    Article  PubMed  Google Scholar 

  36. Coowanitwong I, Arya V, Kulvanich P, Hochhaus G. Slow release formulations of inhaled rifampin. AAPS J. 2008;10(2):342–8. doi:10.1208/s12248-008-9044-5.

    Article  PubMed  CAS  Google Scholar 

  37. Salama R, Traini D, Chan H-K, Young P. Recent advances in controlled release pulmonary therapy. Curr Drug Deliv. 2009;6:404–14. doi:10.1016/j.ejpb.2008.04.009.

    Article  PubMed  CAS  Google Scholar 

  38. Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  PubMed  CAS  Google Scholar 

  39. Papadopoulou V, Kosmidis K, Vlachou M, Macheras P. On the use of the Weibull function for the discernment of drug release mechanisms. Int J Pharm. 2006;309:44–50.

    Article  PubMed  CAS  Google Scholar 

  40. Tsong Y, Hammerstrom T, Sathe P, Shah VP. Statistical assessment of mean differences between two dissolution data sets. Drug Inf J. 1996;30:1105–12.

    Article  Google Scholar 

  41. FDA, CDER.Guidance for industry. Immediate release solid oral dosage forms. Scale-up and postapproval changes: chemistry, manufacturing, and controls, in vitro dissolution testing, and in vivo bioequivalence documentation. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070636.pdf (1995). Accessed 4 Nov 2011.

  42. FDA, CDER. Guidance for industry. SUPAC-MR: modified release solid oral dosage forms scale-up and postapproval changes: chemistry, manufacturing, and controls; in vitro dissolution testing and in vivo bioequivalence documentation. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070640.pdf (1997). Accessed 4 Nov 2011.

  43. EMEA, CPMP. CPMP/QWP/604/96. Note for guidance on quality of modified release products: A: oral dosage forms. B; Transdermal dosage forms. Section I (Quality). http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003664.pdf (1999). Accessed 4 Nov 2011.

  44. Hochhaus G. New developments in corticosteroids. Proc Am Thorac Soc. 2004;1:269–74. doi:10.1513/pats.200402-007MS.

    Article  PubMed  CAS  Google Scholar 

  45. Miller NA, Chaudhuri SR, Lukacova V, Damian-lordache V, Bayliss MK, Woltosz WS. Development of a physiologically-based pharmacokinetic (PBPK) model for predicting deposition and disposition following inhaled and intranasal administration. Respiratory Drug Delivery 2010;2:579–84.

    Google Scholar 

  46. Hochhaus G, Möllman H, Derendorf H, Gonzalez-Rothi RJ. Pharmacokinetic/pharmacodynamic aspects of aerosol therapy using glucocorticoids as a model. J Clin Pharmacol. 1997;37:881–92.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Lyapustina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riley, T., Christopher, D., Arp, J. et al. Challenges with Developing In Vitro Dissolution Tests for Orally Inhaled Products (OIPs). AAPS PharmSciTech 13, 978–989 (2012). https://doi.org/10.1208/s12249-012-9822-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-012-9822-3

Key words

Navigation