Skip to main content
Log in

Characterization of Cimetidine–Piroxicam Coprecipitate Interaction Using Experimental Studies and Molecular Dynamic Simulations

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The crystalline states of cimetidine and piroxicam, when coprecipitated from solvents containing 1:1 mole ratio, were transformed to amorphous states as observed using powder X-ray diffraction (PXRD). Amorphous forms of drugs generally exhibit higher water solubility than crystalline forms. It is therefore interesting to investigate the interactions that cause the transformation of both the crystalline drugs. Intermolecular interactions between the drugs were determined using Fourier-transform infrared spectroscopy (FTIR) and solid-state 13C CP/MAS NMR. Molecular dynamic (MD) simulation was performed for the first time for this type of study to indicate the specific groups involved in the interactions based on radial distribution function (RDF) analyses. RDF is a useful tool to describe the average density of atoms at a distance from a specified atom. FTIR spectra revealed a shift of the C≡N stretching band of cimetidine. The 13C CP/MAS NMR spectra indicated downfield shifts of C11, C15 and C7 of piroxicam. RDF analyses indicated that intermolecular interactions occurred between the amide oxygen atom as well as the pyridyl nitrogen of piroxicam and H-N3 of cimetidine. The hydrogen atom (O–H) at C7 interacts with the N1 of cimetidine. Since the MD simulation results are consistent with, and complementary to the experimental analyses, such simulations could provide a novel strategy for investigating specific interacting groups of drugs in coprecipitates, or in amorphous mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Morre DJ, Morre DM. tNOX, an alternative target to COX-2 to explain the anticancer activities of non-steroidal anti-inflammatory drugs (NSAIDS). Mol Cell Biochem. 2006;283:159–67.

    Article  CAS  PubMed  Google Scholar 

  2. Knottenbelt C, Chambers G, Gault E, Argyle DJ. The in vitro effects of piroxicam and meloxicam on canine cell lines. J Small Anim Pract. 2006;47:14–20.

    Article  CAS  PubMed  Google Scholar 

  3. Semble EL, Wu WC. Antiinflammatory drugs and gastric mucosal damage. Semin Arthritis Rheum. 1987;16:271–86.

    Article  CAS  PubMed  Google Scholar 

  4. Finkelstein W, Isselbacher KJ. Drug therapy: cimetidine. N Engl J Med. 1978;299:992–6.

    CAS  PubMed  Google Scholar 

  5. Maciel HP, Cardoso LG, Ferreira LR, Perazzo FF, Carvalho JC. Anti-inflammatory and ulcerogenic effects of indomethacin and tenoxicam in combination with cimetidine. Inflammopharmacol. 2004;12:203–10.

    Article  CAS  Google Scholar 

  6. Takahashi HK, Watanabe T, Yokoyama A, Iwagaki H, Yoshino T, Tanaka N, et al. Cimetidine induces interleukin-18 production through H2-agonist activity in monocytes. Mol Pharmacol. 2006;70:450–3.

    Article  CAS  PubMed  Google Scholar 

  7. Lefranc F, Yeaton P, Brotchi J, Kiss R. Cimetidine, an unexpected anti-tumor agent, and its potential for the treatment of glioblastoma (review). Int J Oncol. 2006;28:1021–30.

    CAS  PubMed  Google Scholar 

  8. Milligan PA, McGill PE, Howden CW, Kelman AW, Whiting B. The consequences of H2 receptor antagonist-piroxicam coadministration in patients with joint disorders. Eur J Clin Pharmacol. 1993;45:507–12.

    Article  CAS  PubMed  Google Scholar 

  9. Said SA, Foda AM. Influence of cimetidine on the pharmacokinetics of piroxicam in rat and man. Arzneimittelforschung. 1989;39:790–2.

    CAS  PubMed  Google Scholar 

  10. Guo W, Hamilton JA. Phase behavior and crystalline structures of cholesteryl ester mixtures:A C-13 MASNMR study. Biophys J. 1995;68:2376–86.

    Article  CAS  PubMed  Google Scholar 

  11. Yamamura S, Gotoh H, Sakamoto Y, Momose Y. Physicochemical properties of amorphous salt of cimetidine and diflunisal system. Int J Pharm. 2002;241:213–21.

    Article  CAS  PubMed  Google Scholar 

  12. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17:397–404.

    Article  CAS  PubMed  Google Scholar 

  13. Liu J, Qiu L, Gao J, Jin Y. Preparation, characterization and in vivo evaluation of formulation of baicalein with hydroxypropyl-beta-cyclodextrin. Int J Pharm. 2006;312:137–43.

    Article  CAS  PubMed  Google Scholar 

  14. Zmitek J, Smidovnik A, Fir M, Prosek M, Zmitek K, Walczak J, et al. Relative bioavailability of two forms of a novel water-soluble coenzyme Q10. Ann Nutr Metab. 2008;52:281–7.

    Article  CAS  PubMed  Google Scholar 

  15. Tantishaiyakul V, Kaewnopparat N, Ingkatawornwong S. Properties of solid dispersions of piroxicam in polyvinylpyrrolidone K-30. Int J Pharm. 1996;143:59–66.

    Article  CAS  Google Scholar 

  16. Tantishaiyakul V, Kaewnopparat N, Ingkatawornwong S. Properties of solid dispersions of piroxicam in polyvinylpyrrolidone. Int J Pharm. 1999;181:143–51.

    Article  CAS  PubMed  Google Scholar 

  17. Valizadeh H, Zakeri-Milani P, Barzegar-Jalali M, Mohammadi G, Danesh-Bahreini MA, Adibkia K, et al. Preparation and characterization of solid dispersions of piroxicam with hydrophilic carriers. Drug Dev Ind Pharm. 2007;33:45–56.

    Article  CAS  PubMed  Google Scholar 

  18. Redenti E, Zanol M, Ventura P, Fronza G, Comotti A, Taddei P, et al. Raman and solid state 13C-NMR investigation of the structure of the 1:1 amorphous piroxicam:β-cyclodextrin inclusion compound. Biospectroscopy. 1999;5:243–51.

    Article  CAS  PubMed  Google Scholar 

  19. Tantishaiyakul V, Songkro S, Suknuntha K, Permkum P, Pipatwarakul P. Crystal structure transformations and dissolution studies of cimetidine–piroxicam coprecipitates and physical mixtures. AAPS PharmSciTech. 2009;10:789–95.

    Article  PubMed  Google Scholar 

  20. Okonogi S, Puttipipatkhachorn S. Dissolution improvement of high drug-loaded solid dispersion. AAPS PharmSciTech. 2006;7:E1–6.

    Article  Google Scholar 

  21. Mashru RC, Sutariya VB, Sankalia MG, Yagnakumar P. Characterization of solid dispersions of rofecoxib using differential scanning calorimeter. JTherm Anal Calorim. 2005;82:167–70.

    Article  CAS  Google Scholar 

  22. Schachter DM, Xiong J, Tirol GC. Solid state NMR perspective of drug-polymer solid solutions: a model system based on poly(ethylene oxide). Int J Pharm. 2004;281:89–101.

    Article  CAS  PubMed  Google Scholar 

  23. Suknuntha K, Tantishaiyakul V, Vao-Soongnern V, Espidel Y, Cosgrove T. Molecular modeling simulation and experimental measurements to characterize chitosan and poly(vinyl pyrrolidone) blend interactions. J Polym Sci Polym Phys. 2008;46:1258–64.

    Article  CAS  Google Scholar 

  24. Sandoval C, Castro C, Gargallo L, Radic D, Freire J. Specific interactions in blends containing chitosan and functionalized polymers. Molecular dynamics simulations. Polymer. 2005;46:10437–42.

    Article  CAS  Google Scholar 

  25. Suga Y, Takahama T. Application of molecular simulation to prediction of solubility parameter. Chem Lett. 1996;281–2.

  26. Jacobson SH. Molecular modeling studies of polymeric transdermal adhesives: structure and transport mechanisms. Pharm Technol. 1999;122–30.

  27. Li B, Pan F, Fang Z, Liu L, Jiang Z. Molecular dynamics simulation of diffusion behavior of benzene/water in PDMS-calix [4] arene hybrid pervaporation membranes. Ind Eng Chem Res. 2008;47:4440–7.

    Article  CAS  Google Scholar 

  28. Heuchel M, Hofmann D, Pullumbi P. Molecular modeling of small-molecule permeation in polyimides and its correlation to free-volume distributions. Macromolecules. 2004;37:201–14.

    Article  CAS  Google Scholar 

  29. Vrecer F, Vrbinc M, Meden A. Characterization of piroxicam crystal modifications. Int J Pharm. 2003;256:3–15.

    Article  CAS  PubMed  Google Scholar 

  30. Sheth AR, Bates S, Muller FX, Grant DJW. Polymorphism in piroxicam. Cryst Growth Des. 2004;4:1091–8.

    Article  CAS  Google Scholar 

  31. Baranska M, Proniewicz LM. FT-IR and FT-Raman spectra of cimetidine and its metallocomplexes. J Mol Struct. 1999;511–512:153–62.

    Article  Google Scholar 

  32. Shibata M, Kokubo H, Morimoto K, Morisaka K, Ishida T, Inoue M. X-ray structural studies and physicochemical properties of cimetidine polymorphism. J Pharm Sci. 1983;72:1436–42.

    Article  CAS  PubMed  Google Scholar 

  33. Sheth AR, Bates S, Muller FX, Grant DJW. Local structure in amorphous phases of piroxicam from powder X-ray diffractometry. Cryst Growth Des. 2005;5:571–8.

    Article  CAS  Google Scholar 

  34. Rigby D. Fluid density predictions using the COMPASS force field. Fluid Phase Equilib. 2004;217:77–87.

    Article  CAS  Google Scholar 

  35. Mazeau K, Heux L. Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B. 2003;107:2394–403.

    Article  CAS  Google Scholar 

  36. Tantishaiyakul V, Permkam P, Suknuntha K. Use of DRIFTS and PLS for the determination of polymorphs of piroxicam alone and in combination with pharmaceutical excipients: a technical note. AAPS PharmSciTech. 2008;9:95–9.

    Article  PubMed  Google Scholar 

  37. Hegedus B, Gorog S. The polymorphism of cimetidine. J Pharm Biomed Anal. 1985;3:303–13.

    Article  CAS  PubMed  Google Scholar 

  38. Middleton DA, Duff CSL, Berst F, Reid DG. A cross-polarization magic-angle spinning 13C NMR characterization of the stable solid-state forms of cimetidine. J Pharm Sci. 1997;86:1400–2.

    Article  CAS  PubMed  Google Scholar 

  39. Sheth AR, Lubach JW, Munson EJ, Muller FX, Grant DJW. Mechanochromism of piroxicam accompanied by intermolecular proton transfer probed by spectroscopic methods and solid-phase changes. J Am Chem Soc. 2005;127:6641–51.

    Article  CAS  PubMed  Google Scholar 

  40. Geckle JM, Rescek DM, Whipple EB. Zwitterionic piroxicam in polar solution. Magn Reson Chem. 1989;27:150–4.

    Article  CAS  Google Scholar 

  41. Karpinska G, Dobrowolski JC, Mazurek AP. Conformation and tautomerism of the cimetidine molecule: a theoretical study. J Mol Struct. 2003;645:37–43.

    Article  CAS  Google Scholar 

  42. Taddei P, Torreggiani A, Simoni R. Influence of environment on piroxicam polymorphism: vibrational spectroscopic study. Biopolymers. 2000;62:68–78.

    Article  Google Scholar 

  43. Middleton DA, Duff CSL, Peng X, Reid DG, Saunders D. Molecular conformations of the polymorphic forms of cimetidine from 13C solid-state NMR distance and angle measurements. J Am Chem Soc. 2000;122:1161–70.

    Article  CAS  Google Scholar 

  44. Birkedal H, Bauer-Brandl A, Pattison P. The surprising polymorph C of cimetidine: synchrotron radiation to the rescue. XIXth European Crystallographic Meeting. Nancy, France: Abstracts. Acta Cryst. 2000;A56:s337. Supplement.

    Google Scholar 

Download references

Acknowledgments

This work was supported by Prince of Songkla University, PSU-Grid and the National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Ministry of Science and Technology through its National Nanoscience Consortium (CNC). The authors would like to thank Professor Terrence Cosgrove and Dr. Youssef Espidel for 13C CP/MAS NMR experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimon Tantishaiyakul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tantishaiyakul, V., Suknuntha, K. & Vao-Soongnern, V. Characterization of Cimetidine–Piroxicam Coprecipitate Interaction Using Experimental Studies and Molecular Dynamic Simulations. AAPS PharmSciTech 11, 952–958 (2010). https://doi.org/10.1208/s12249-010-9461-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9461-5

KEY WORDS

Navigation