Skip to main content

Advertisement

Log in

Anthocyanin Delphinidin Prevents Neoplastic Transformation of Mouse Skin JB6 P+ Cells: Epigenetic Re-activation of Nrf2-ARE Pathway

  • Research Article
  • Theme: Natural Products Drug Discovery in Cancer Prevention
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Redox imbalance is a major contributor to the pathogenesis of melanoma and nonmelanoma skin cancer. Activation of the nuclear factor E2–related factor 2 (Nrf2) antioxidant responsive element (ARE) pathway is an intrinsic defense mechanism against oxidative stress. Flavonoids such as anthocyanidins, which are found abundantly in fruits and vegetables, have been shown to activate Nrf2. However, the epigenetic and genetic mechanisms by which anthocyanidins modulate the Nrf2-ARE pathway remain poorly understood in the context of skin cancer. In this study, delphinidin, one of the most potent and abundant anthocyanidins in berries, significantly inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)–induced neoplastic cell transformation in mouse epidermal JB6 P+ cells by 69.4 to 99.4%. The mechanism was elucidated based on observations of increased ARE-driven luciferase activity and elevated mRNA and protein expression of Nrf2 downstream genes, such as heme oxygenase-1 (Ho-1), in JB6 P+ cells. Activation of the Nrf2-ARE pathway was correlated with demethylation of 15 CpG sites in the mouse Nrf2 promoter region between nt − 1226 and − 863 from the transcription start site. The reduced CpG methylation ratio in the Nrf2 promoter region was consistent with observed decreases in the protein expression of DNA methyltransferases 1 (DNMT1), DNMT3a, and class I/II histone deacetylases (HDACs). Overall, our results suggest that delphinidin, an epigenetic demethylating agent of the Nrf2 promoter, can activate the Nrf2-ARE pathway, which can be applied as a potential skin cancer chemopreventive agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TPA:

12-O-tetradecanoylphorbol-13-acetate

DMBA:

7,12-Dimethylbenz[a]anthracene

ARE:

Antioxidant response element

Nrf2:

Nuclear factor E2–related factor 2

GST:

Glutathione S-transferase

DNMTs:

DNA methyltransferases

HDACs:

Histone deacetylases

HO-1:

Heme oxygenase-1

NQO1:

NAD(P)H/quinone oxidoreductase 1

KEAP1:

Kelch-like ECH–associated protein 1

GCLM:

Glutamate-cysteine ligase

MRP1:

Multidrug resistance protein 1

SOD:

Superoxide dismutase

ROS:

Reactive oxygen species

References

  1. Madan V, Lear JT, Szeimies R-M. Non-melanoma skin cancer. Lancet. 2010;375(9715):673–85.

    Article  CAS  PubMed  Google Scholar 

  2. American Cancer Society. Cancer Facts & Figures. Atlanta: American Cancer Society. 2019.

  3. Alam M, Ratner D. Cutaneous squamous-cell carcinoma. N Engl J Med. 2001;344(13):975–83.

    Article  CAS  PubMed  Google Scholar 

  4. Stewart BW, Kleihues P. editors. World Cancer Report. Lyon: IARC Press. 2003.

  5. Slaga TJ, Bracken WM. The effects of antioxidants on skin tumor initiation and aryl hydrocarbon hydroxylase. Cancer Res. 1977;37(6):1631–5.

    CAS  PubMed  Google Scholar 

  6. Huang MT, Smart RC, Wong CQ, Conney AH. Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 1988;48(21):5941–6.

    CAS  PubMed  Google Scholar 

  7. Singh RP, Agarwal R. Mechanisms and preclinical efficacy of silibinin in preventing skin cancer. Eur J Cancer. 2005;41(13):1969–79.

    Article  CAS  PubMed  Google Scholar 

  8. Huang MT, Ho CT, Wang ZY, Ferraro T, Lou YR, Stauber K, et al. Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid. Cancer Res. 1994;54(3):701–8.

    CAS  PubMed  Google Scholar 

  9. Lin BW, Gong CC, Song HF, Cui YY. Effects of anthocyanins on the prevention and treatment of cancer. Br J Pharmacol. 2017;174(11):1226–43.

    Article  CAS  PubMed  Google Scholar 

  10. Shih P-H, Yeh C-T, Yen G-C. Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis. J Agric Food Chem. 2007;55(23):9427–35.

    Article  CAS  PubMed  Google Scholar 

  11. Yi L, Chen C-y, Jin X, Mi M-t, Yu B, Chang H, et al. Structural requirements of anthocyanins in relation to inhibition of endothelial injury induced by oxidized low-density lipoprotein and correlation with radical scavenging activity. FEBS Lett. 2010;584(3):583–90.

    Article  CAS  PubMed  Google Scholar 

  12. Esposito D, Chen A, Grace MH, Komarnytsky S, Lila MA. Inhibitory effects of wild blueberry anthocyanins and other flavonoids on biomarkers of acute and chronic inflammation in vitro. J Agric Food Chem. 2014;62(29):7022–8.

    Article  CAS  PubMed  Google Scholar 

  13. Peiffer DS, Zimmerman NP, Wang L-S, Ransom B, Carmella SG, Kuo C-T, et al. Chemoprevention of esophageal cancer with black raspberries, their component anthocyanins, and a major anthocyanin metabolite, protocatechuic acid. Cancer Prev Res. 2014;7(6):574.

    Article  CAS  PubMed  Google Scholar 

  14. Limtrakul P, Yodkeeree S, Pitchakarn P, Punfa W. Suppression of inflammatory responses by black rice extract in RAW 264.7 macrophage cells via downregulation of NF-kB and AP-1 signaling pathways. Asian Pac J Cancer Prev. 2015;16(10):4277–83.

    Article  PubMed  Google Scholar 

  15. Yoshimoto M, Okuno S, Yoshinaga M, Yamakawa O, Yamaguchi M, Yamada J. Antimutagenicity of sweetpotato (Ipomoea batatas) roots. Biosci Biotechnol Biochem. 1999;63(3):537–41.

    Article  CAS  PubMed  Google Scholar 

  16. Shi MZ, Xie DY. Biosynthesis and metabolic engineering of anthocyanins in Arabidopsis thaliana. Recent Pat Biotechnol. 2014;8(1):47–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hou D-X, Fujii M, Terahara N, Yoshimoto M. Molecular mechanisms behind the chemopreventive effects of anthocyanidins. Biomed Res Int. 2004;2004(5):321–5.

    Google Scholar 

  18. Veberic R, Slatnar A, Bizjak J, Stampar F, Mikulic-Petkovsek M. Anthocyanin composition of different wild and cultivated berry species. LWT-Food Sci Technol. 2015;60(1):509–17.

    Article  CAS  Google Scholar 

  19. Simon JE, Morales MR, Phippen WB, Vieira RF, Hao Z. Basil: a source of aroma compounds and a popular culinary and ornamental herb. In: Janick J, editors. Fourth National Symposium New Crops and New Uses: Biodiversity and Agricultural Sustainability; Perspectives on New Crops and New Uses; 1998; Phoenix, AZ. Alexandria: ASHS Press; 1999. p. 499–505.

  20. Awika JM, Rooney LW, Waniska RD. Anthocyanins from black sorghum and their antioxidant properties. Food Chem. 2005;90(1):293–301.

    Article  CAS  Google Scholar 

  21. Li C-Y, Kim H-W, Won SR, Min H-K, Park K-J, Park J-Y, et al. Corn husk as a potential source of anthocyanins. J Agric Food Chem. 2008;56(23):11413–6.

    Article  CAS  PubMed  Google Scholar 

  22. Srivastava J, Vankar PS. Canna indica flower: new source of anthocyanins. Plant Physiol Biochem. 2010;48(12):1015–9.

    Article  CAS  PubMed  Google Scholar 

  23. Ichikawa H, Ichiyanagi T, Xu B, Yoshii Y, Nakajima M, Konishi T. Antioxidant activity of anthocyanin extract from purple black rice. J Med Food. 2001;4(4):211–8.

    Article  CAS  PubMed  Google Scholar 

  24. Aguilera Y, Mojica L, Rebollo-Hernanz M, Berhow M, de Mejía EG, Martín-Cabrejas MA. Black bean coats: new source of anthocyanins stabilized by β-cyclodextrin copigmentation in a sport beverage. Food Chem. 2016;212:561–70.

    Article  CAS  PubMed  Google Scholar 

  25. Pazmiño-Durán EA, Giusti MM, Wrolstad RE, Glória MBA. Anthocyanins from banana bracts (Musa X paradisiaca) as potential food colorants. Food Chem. 2001;73(3):327–32.

    Article  Google Scholar 

  26. Hou D-X, Kai K, Li J-J, Lin S, Terahara N, Wakamatsu M, et al. Anthocyanidins inhibit activator protein 1 activity and cell transformation: structure–activity relationship and molecular mechanisms. Carcinogenesis. 2004;25(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao Y, Xue Y, Oberley TD, Kiningham KK, Lin S-M, Yen H-C, et al. Overexpression of manganese superoxide dismutase suppresses tumor formation by modulation of activator protein-1 signaling in a multistage skin carcinogenesis model. Cancer Res. 2001;61(16):6082–8.

    CAS  PubMed  Google Scholar 

  28. Afaq F, Syed DN, Malik A, Hadi N, Sarfaraz S, Kweon M-H, et al. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, protects human HaCaT keratinocytes and mouse skin against UVB-mediated oxidative stress and apoptosis. J Investig Dermatol. 2007;127(1):222–32.

    Article  CAS  PubMed  Google Scholar 

  29. Ma Q. Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53(1):401–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chan JY, Cheung MC, Moi P, Chan K, Kan YW. Chromosomal localization of the human NF-E2 family of bZIP transcription factors by fluorescence in situ hybridization. Hum Genet. 1995;95(3):265–9.

    Article  CAS  PubMed  Google Scholar 

  31. Jaramillo MC, Zhang DD. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 2013;27(20):2179–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Deshmukh P, Unni S, Krishnappa G, Padmanabhan B. The Keap1-Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophys Rev. 2017;9(1):41–56.

    Article  CAS  PubMed  Google Scholar 

  33. Furukawa M, Xiong Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol. 2005;25(1):162–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells. 2011;16(2):123–40.

    Article  CAS  PubMed  Google Scholar 

  35. Singh S, Vrishni S, Singh BK, Rahman I, Kakkar P. Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases. Free Radic Res. 2010;44(11):1267–88.

    Article  CAS  PubMed  Google Scholar 

  36. Hu R, Saw CL, Yu R, Kong AN. Regulation of NF-E2-related factor 2 signaling for cancer chemoprevention: antioxidant coupled with antiinflammatory. Antioxid Redox Signal. 2010;13(11):1679–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1:45–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roslin JT, Deepak B, Kendra FB, Erzsebet H-R, Judit H, Altaf SD, et al. Black currant anthocyanins abrogate oxidative stress through Nrf2-mediated antioxidant mechanisms in a rat model of hepatocellular carcinoma. Curr Cancer Drug Targets. 2012;12(9):1244–57.

    Google Scholar 

  39. Yang Y, Yang I, Cao M, Su ZY, Wu R, Guo Y, et al. Fucoxanthin elicits epigenetic modifications, Nrf2 activation and blocking transformation in mouse skin JB6 P+ cells. AAPS J. 2018;20(2):32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Yu R, Lei W, Mandlekar S, Weber MJ, Der CJ, Wu J, et al. Role of a mitogen-activated protein kinase pathway in the induction of phase II detoxifying enzymes by chemicals. J Biol Chem. 1999;274(39):27545–52.

    Article  CAS  PubMed  Google Scholar 

  41. Kim H, Ramirez CN, Su ZY, Kong AN. Epigenetic modifications of triterpenoid ursolic acid in activating Nrf2 and blocking cellular transformation of mouse epidermal cells. J Nutr Biochem. 2016;33:54–62.

    Article  CAS  PubMed  Google Scholar 

  42. Su ZY, Zhang C, Lee JH, Shu L, Wu TY, Khor TO, et al. Requirement and epigenetics reprogramming of Nrf2 in suppression of tumor promoter TPA-induced mouse skin cell transformation by sulforaphane. Cancer Prev Res (Phila). 2014;7(3):319–29.

    Article  CAS  Google Scholar 

  43. Yu S, Khor TO, Cheung KL, Li W, Wu TY, Huang Y, et al. Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS One. 2010;5(1):e8579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Paredes-Gonzalez X, Fuentes F, Su Z-Y, Kong A-NT. Apigenin reactivates Nrf2 anti-oxidative stress signaling in mouse skin epidermal JB6 P + cells through epigenetics modifications. AAPS J. 2014;16(4):727–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khor TO, Huang Y, Wu T-Y, Shu L, Lee J, Kong A-NT. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem Pharmacol. 2011;82(9):1073–8.

    Article  CAS  PubMed  Google Scholar 

  46. Wu T-Y, Khor TO, Su Z-Y, Saw CL-L, Shu L, Cheung K-L, et al. Epigenetic modifications of Nrf2 by 3,3′-diindolylmethane in vitro in TRAMP C1 cell line and in vivo TRAMP prostate tumors. AAPS J. 2013;15(3):864–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang Y, Khor TO, Shu L, Saw CL-L, Wu T-Y, Suh N, et al. A γ-tocopherol-rich mixture of tocopherols maintains Nrf2 expression in prostate tumors of TRAMP mice via epigenetic inhibition of CpG methylation. J Nutr. 2012;142(5):818–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang C, Su Z-Y, Khor TO, Shu L, Kong A-NT. Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP C1 cells through epigenetic regulation. Biochem Pharmacol. 2013;85(9):1398–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang L, Zhang C, Guo Y, Su Z-Y, Yang Y, Shu L, et al. Blocking of JB6 cell transformation by Tanshinone IIA: epigenetic reactivation of Nrf2 antioxidative stress pathway. AAPS J. 2014;16(6):1214–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Su Z-Y, Khor TO, Shu L, Lee JH, Saw CL-L, Wu T-Y, et al. Epigenetic reactivation of Nrf2 in murine prostate cancer TRAMP C1 cells by natural phytochemicals Z-Ligustilide and Radix Angelica Sinensis via promoter CpG demethylation. Chem Res Toxicol. 2013;26(3):477–85.

    Article  CAS  PubMed  Google Scholar 

  51. Vaid M, Prasad R, Singh T, Jones V, Katiyar SK. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators. Toxicol Appl Pharmacol. 2012;263(1):122–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang L-S, Kuo C-T, Cho S-J, Seguin C, Siddiqui J, Stoner K, et al. Black raspberry-derived anthocyanins demethylate tumor suppressor genes through the inhibition of DNMT1 and DNMT3B in colon cancer cells. Nutr Cancer. 2013;65(1):118–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wei S-J, Trempus CS, Ali RC, Hansen LA, Tennant RW. 12-O-tetradecanoylphorbol-13-acetate and UV radiation-induced nucleoside diphosphate protein kinase B mediates neoplastic transformation of epidermal cells. J Biol Chem. 2004;279(7):5993–6004.

    Article  CAS  PubMed  Google Scholar 

  54. Abel EL, Angel JM, Kiguchi K, DiGiovanni J. Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat Protoc. 2009;4(9):1350–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang Y, Gordon GB. A strategy for cancer prevention: stimulation of the Nrf2-ARE signaling pathway. Mol Cancer Ther. 2004;3(7):885–93.

    CAS  PubMed  Google Scholar 

  56. Arzenani MK, Zade AE, Ming Y, Vijverberg SJ, Zhang Z, Khan Z, et al. Genomic DNA hypomethylation by histone deacetylase inhibition implicates DNMT1 nuclear dynamics. Mol Cell Biol. 2011;31(19):4119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Godic A, Poljšak B, Adamic M, Dahmane R. The role of antioxidants in skin cancer prevention and treatment. Oxid Med Cell Longev. 2014;2014(5):860479

    Article  CAS  Google Scholar 

  58. Raghunath A, Sundarraj K, Nagarajan R, Arfuso F, Jinsong B, Kumar AP, et al. Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol. 2018;17:297–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xu C, Huang M-T, Shen G, Yuan X, Lin W, Khor TO, et al. Inhibition of 7, 12-dimethylbenz (a) anthracene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2–related factor 2. Cancer Res. 2006;66(16):8293–6.

    Article  CAS  PubMed  Google Scholar 

  60. Khor TO, Fuentes F, Shu L, Paredes-Gonzalez X, Yang AY, Liu Y, et al. Epigenetic DNA methylation of antioxidative stress regulator NRF2 in human prostate cancer. Cancer Prev Res (Phila). 2014;7(12):1186–97.

    Article  CAS  PubMed Central  Google Scholar 

  61. Seong AR, Yoo JY, Choi K, Lee MH, Lee YH, Lee J, et al. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-kappaB acetylation in fibroblast-like synoviocyte MH7A cells. Biochem Biophys Res Commun. 2011;410(3):581–6.

    Article  CAS  PubMed  Google Scholar 

  62. Jeong M-H, Ko H, Jeon H, Sung G-J, Park S-Y, Jun WJ, et al. Delphinidin induces apoptosis via cleaved HDAC3-mediated p53 acetylation and oligomerization in prostate cancer cells. 2016;7(35):56767.

  63. Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 2017;18(7):1414.

    Article  PubMed Central  CAS  Google Scholar 

  64. Medina-Franco JL, Yoo J, Dueñas-González A. Chapter 13—DNA methyltransferase inhibitors for cancer therapy. In: Zheng YG, editor. Epigenetic Technological Applications. Boston: Academic Press; 2015. p. 265–90.

    Chapter  Google Scholar 

Download references

Acknowledgments

This study was supported by R01CA200129 from the National Cancer Institute (NCI). We thank all the members of Dr. Ah-Ng Kong’s laboratory for their invaluable discussion and technical support for preparation of this manuscript.

Authorship Contributions

Participated in research design: Hsiao-Chen Dina Kuo and Ah-Ng Kong.

Conducted experiments: Hsiao-Chen Dina Kuo.

Performed data analysis: Hsiao-Chen Dina Kuo, Renyi Wu, Shanyi Li, Anne Yuqing Yang, and Ah-Ng Kong.

Wrote the manuscript: Hsiao-Chen Dina Kuo, Renyi Wu, and Ah-Ng Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ah-Ng Kong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Guest Editors: Ah-Ng Tony Kong and Chi Chen

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, HC.D., Wu, R., Li, S. et al. Anthocyanin Delphinidin Prevents Neoplastic Transformation of Mouse Skin JB6 P+ Cells: Epigenetic Re-activation of Nrf2-ARE Pathway. AAPS J 21, 83 (2019). https://doi.org/10.1208/s12248-019-0355-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-019-0355-5

KEY WORDS

Navigation