Skip to main content

Advertisement

Log in

Neurovascular Alterations in Alzheimer’s Disease: Transporter Expression Profiles and CNS Drug Access

  • Review Article
  • Theme: CNS Barriers in Health and Disease
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Despite a century of steady and incremental progress toward understanding the underlying biochemical mechanisms, Alzheimer’s disease (AD) remains a complicated and enigmatic disease, and greater insight will be necessary before substantive clinical success is realised. Over the last decade in particular, a large body of work has highlighted the cerebral microvasculature as an anatomical region with an increasingly apparent role in the pathogenesis of AD. The causative interplay and temporal cascade that manifest between the brain vasculature and the wider disease progression of AD are not yet fully understood, and further inquiry is required to properly characterise these relationships. The purpose of this review is to highlight the recent advancements in research implicating neurovascular factors in AD, at both the molecular and anatomical levels. We begin with a brief introduction of the biochemical and genetic aspects of AD, before reviewing the essential concepts of the blood-brain barrier (BBB) and the neurovascular unit (NVU). In detail, we then examine the evidence demonstrating involvement of BBB dysfunction in AD pathogenesis, highlighting the importance of neurovascular components in AD. Lastly, we include within this review research that focuses on how altered properties of the BBB in AD impact upon CNS exposure of therapeutic agents and the potential clinical impact that this may have on people with this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vaupel JW. Biodemography of human ageing. Nature. 2010;464:536–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guerreiro R, Bras J. The age factor in Alzheimer’s disease. Genome Med. 2015;7:106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M, World Alzheimer Report. The global impact of dementia: an analysis of prevalence, incidence, cost and trends. London: Global Observatory for Ageing and Dementia Care–King’s College; 2015.

  4. Strobel G. What is early onset familial Alzheimer disease (eFAD). Alzforum: Retrieved 05.01.2017 [cited 2017]; Available from: http://www.alzforum.org/early-onset-familial-ad/overview/what-early-onset-familial-alzheimer-disease-efad.

  5. Waring SC, Doody RS, Pavlik VN, Massman PJ, Chan W. Survival among patients with dementia from a large multi-ethnic population. Alzheimer Dis Assoc Disord. 2005;19:178–83.

    Article  PubMed  Google Scholar 

  6. Ryman DC, Acosta-Baena N, Aisen PS, Bird T, Danek A, Fox NC, et al. Symptom onset in autosomal dominant Alzheimer disease: a systematic review and meta-analysis. Neurology. 2014;83:253–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Selkoe DJ. Alzheimer’s disease. 2011;CSH Perspect Bio:a004457-a

  8. Alzhiemer A. Über einen eigenartigen schweren Erkrankungsprozeß der Hirnrinde. Neurologisches Centralblatt. 1906;23:1129–36.

    Google Scholar 

  9. Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984;120:885–90.

    Article  CAS  PubMed  Google Scholar 

  10. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA. 1985;82:4245–9.

  11. Nukina N, Ihara Y. One of the antigenic determinants of paired helical filaments is related to tau protein. J Biochem. 1986;99:1541–4.

    Article  CAS  PubMed  Google Scholar 

  12. Kenneth S, Kosik CLJ, Selkoe DJ. Microtubule-associated protein tau is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA. 1986;83:4044–8.

  13. Inge Grundke-Iqbal KI, Tung Y-C, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA. 1986;83:4913–7.

    Article  Google Scholar 

  14. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21:383–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N. A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry. 2010;68:930–41.

    Article  CAS  PubMed  Google Scholar 

  16. Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, et al. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol. 1999;155:853–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, et al. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol. 1999;46:860–6.

    Article  CAS  PubMed  Google Scholar 

  18. Markesbery WR. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med. 1997;23:134–47.

    Article  CAS  PubMed  Google Scholar 

  19. Uylings HBM, de Brabander JM. Neuronal changes in normal human aging and Alzheimer’s disease. Brain Cogn. 2002;49:268–76.

    Article  PubMed  Google Scholar 

  20. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med. 1996;2:864–70.

    Article  CAS  PubMed  Google Scholar 

  21. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995;375:754–60.

    Article  CAS  PubMed  Google Scholar 

  22. Haass C, Selkoe DJ. Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell. 1993;75:1039–42.

    Article  CAS  PubMed  Google Scholar 

  23. Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA, Herms J. Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci. 2006;26:7212–21.

    Article  CAS  PubMed  Google Scholar 

  24. Weidemann A, Konig G, Bunke D, Fischer P, Salbaum JM, Masters CL, et al. Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell. 1989;57:115–26.

    Article  CAS  PubMed  Google Scholar 

  25. Rohan de Silva HA, Jen A, Wickenden C, Jen LS, Wilkinson SL, Patel AJ. Cell-specific expression of beta-amyloid precursor protein isoform mRNAs and proteins in neurons and astrocytes. Brain Res Mol Brain Res. 1997;47:147–56.

    Article  CAS  PubMed  Google Scholar 

  26. Hartmann T, Bieger SC, Bruhl B, Tienari PJ, Ida N, Allsop D, et al. Distinct sites of intracellular production for Alzheimer’s disease Aβ40/42 amyloid peptides. Nat Med. 1997;3:1016–20.

  27. Dries DR, Yu G. Assembly, maturation and trafficking of the gamma-secretase complex in Alzheimer’s disease. Curr Alzheimer Res. 2008;5:132–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Walsh DM, Selkoe DJ. A beta oligomers—a decade of discovery. J Neurochem. 2007;101:1172–84.

    Article  CAS  PubMed  Google Scholar 

  29. Ringman JM, Goate A, Masters CL, Cairns NJ, Danek A, Graff-Radford N, et al. Genetic heterogeneity in Alzheimer disease and implications for treatment strategies. Curr Neurol Neurosci Rep. 2014;14:499.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA. 1993;90:1977–81

  31. Schmechel DE, Saunders AM, Strittmatter WJ, Crain BJ, Hulette CM, Joo SH, et al. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90:9649–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang Q, Lee CY, Mandrekar S, Wilkinson B, Cramer P, Zelcer N, et al. ApoE promotes the proteolytic degradation of Abeta. Neuron. 2008;58:681–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koistinaho M, Lin S, Wu X, Esterman M, Koger D, Hanson J, et al. Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med. 2004;10:719–26.

    Article  CAS  PubMed  Google Scholar 

  34. Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin a. Nature. 2012;485:512–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arriagada PV, Marzloff K, Hyman BT. Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology. 1992;42:1681–8.

    Article  CAS  PubMed  Google Scholar 

  36. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1:a006189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Nagy Z, Esiri MM, Jobst KA, Morris JH, King EMF, McDonald B, et al. Relative roles of plaques and tangles in the dementia of Alzheimer’s disease: correlations using three sets of neuropathological criteria. Dement Geriatr Cogn Disord. 1995;6:21–31.

    Article  CAS  Google Scholar 

  38. Jack Jr CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256:184–5.

    Article  CAS  PubMed  Google Scholar 

  40. Wang J, Dickson DW, Trojanowski JQ, Lee VM. The levels of soluble versus insoluble brain Abeta distinguish Alzheimer’s disease from normal and pathologic aging. Exp Neurol. 1999;158:328–37.

    Article  CAS  PubMed  Google Scholar 

  41. Kayed R, Lasagna-Reeves CA. Molecular mechanisms of amyloid oligomers toxicity. J Alzheimers Dis. 2013;33(Suppl 1):S67–78.

    PubMed  Google Scholar 

  42. Zlokovic BV. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci. 2005;28:202–8.

    Article  CAS  PubMed  Google Scholar 

  43. Zlokovic BV, Deane R, Sallstrom J, Chow N, Miano JM. Neurovascular pathways and Alzheimer amyloid beta-peptide. Brain Pathol. 2005;15:78–83.

    Article  CAS  PubMed  Google Scholar 

  44. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science. 2010;330:1774.

  45. Thal DR. The role of astrocytes in amyloid β-protein toxicity and clearance. Exp Neurol. 2012;236:1–5.

  46. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4:147ra11.

  47. Roberts KF, Elbert DL, Kasten TP, Patterson BW, Sigurdson WC, Connors RE, et al. Amyloid-β efflux from the central nervous system into the plasma. Ann Neurol. 2014;76:837–44.

  48. Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, et al. Clearance of Alzheimer’s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest. 2000;106:1489–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57:173–85.

    Article  CAS  PubMed  Google Scholar 

  50. Kniesel U, Wolburg H. Tight junctions of the blood-brain barrier. Cell Mol Neurobiol. 2000;20:57–76.

    Article  CAS  PubMed  Google Scholar 

  51. Nicolazzo JA, Charman SA, Charman WN. Methods to assess drug permeability across the blood-brain barrier. J Pharm Pharmacol. 2006;58:281–93.

    Article  CAS  PubMed  Google Scholar 

  52. Fenstermacher J, Gross P, Sposito N, Acuff V, Pettersen S, Gruber K. Structural and functional variations in capillary systems within the brain. Ann N Y Acad Sci. 1988;529:21–30.

    Article  CAS  PubMed  Google Scholar 

  53. Oldendorf WH, Cornford ME, Brown WJ. The large apparent work capability of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol. 1977;1:409–17.

    Article  CAS  PubMed  Google Scholar 

  54. Shawahna R, Decleves X, Scherrmann JM. Hurdles with using in vitro models to predict human blood-brain barrier drug permeability: a special focus on transporters and metabolizing enzymes. Curr Drug Metab. 2013;14:120–36.

    Article  CAS  PubMed  Google Scholar 

  55. Erickson MA, Banks WA. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab. 2013;33:1500–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12:723–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Matsson P, Pedersen JM, Norinder U, Bergstrom CA, Artursson P. Identification of novel specific and general inhibitors of the three major human ATP-binding cassette transporters P-gp, BCRP and MRP2 among registered drugs. Pharm Res. 2009;26:1816–31.

    Article  CAS  PubMed  Google Scholar 

  58. Campos-Bedolla P, Walter FR, Veszelka S, Deli MA. Role of the blood-brain barrier in the nutrition of the central nervous system. Arch Med Res. 2014;45:610–38.

    Article  CAS  PubMed  Google Scholar 

  59. Banks WA. Brain meets body: the blood-brain barrier as an endocrine interface. Endocrinology. 2012;153:4111–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Beuckmann CT, Dernbach K, Hakvoort A, Galla HJ. A new astrocytic cell line which is able to induce a blood-brain barrier property in cultured brain capillary endothelial cells. Cytotechnology. 1997;24:11–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57:178–201.

    Article  CAS  PubMed  Google Scholar 

  62. Lo EH, Broderick JP, Moskowitz MA. tPA and proteolysis in the neurovascular unit. Stroke. 2004;35:354–6.

    Article  PubMed  Google Scholar 

  63. Muoio V, Persson PB, Sendeski MM. The neurovascular unit—concept review. Acta Physiol. 2014;210:790–8.

  64. Boado RJ, Pardridge WM. Glucose deprivation and hypoxia increase the expression of the GLUT1 glucose transporter via a specific mRNA cis-acting regulatory element. J Neurochem. 2002;80:552–4.

    Article  CAS  PubMed  Google Scholar 

  65. Boroujerdi A, Welser-Alves JV, Milner R. Matrix metalloproteinase-9 mediates post-hypoxic vascular pruning of cerebral blood vessels by degrading laminin and claudin-5. Angiogenesis. 2015;18:255–64.

    Article  CAS  PubMed  Google Scholar 

  66. Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell. 2006;9:287–300.

    Article  CAS  PubMed  Google Scholar 

  67. Mae M, Armulik A, Betsholtz C. Getting to know the cast—cellular interactions and signaling at the neurovascular unit. Curr Pharm Des. 2011;17:2750–4.

    Article  CAS  PubMed  Google Scholar 

  68. Thanabalasundaram G, Pieper C, Lischper M, Galla HJ. Regulation of the blood-brain barrier integrity by pericytes via matrix metalloproteinases mediated activation of vascular endothelial growth factor in vitro. Brain Res. 2010;1347:1–10.

    Article  CAS  PubMed  Google Scholar 

  69. Estrada C, Bready JV, Berliner JA, Pardridge WM, Cancilla PA. Astrocyte growth stimulation by a soluble factor produced by cerebral endothelial cells in vitro. J Neuropathol Exp Neurol. 1990;49:539–49.

    Article  CAS  PubMed  Google Scholar 

  70. Mi H, Haeberle H, Barres BA. Induction of astrocyte differentiation by endothelial cells. J Neurosci. 2001;21:1538–47.

    CAS  PubMed  Google Scholar 

  71. Plane JM, Andjelkovic AV, Keep RF, Parent JM. Intact and injured endothelial cells differentially modulate postnatal murine forebrain neural stem cells. Neurobiol Dis. 2010;37:218–27.

    Article  CAS  PubMed  Google Scholar 

  72. Karamanos Y, Gosselet F, Dehouck MP, Cecchelli R. Blood-brain barrier proteomics: towards the understanding of neurodegenerative diseases. Arch Med Res. 2014;45:730–7.

    Article  CAS  PubMed  Google Scholar 

  73. Macdonald JA, Murugesan N, Pachter JS. Endothelial cell heterogeneity of blood-brain barrier gene expression along the cerebral microvasculature. J Neurosci Res. 2010;88:1457–74.

    CAS  PubMed  Google Scholar 

  74. Paul D, Cowan AE, Ge S, Pachter JS. Novel 3D analysis of Claudin-5 reveals significant endothelial heterogeneity among CNS microvessels. Microvasc Res. 2013;86:1–10.

    Article  CAS  PubMed  Google Scholar 

  75. Zhao R, Pollack GM. Regional differences in capillary density, perfusion rate, and P-glycoprotein activity: a quantitative analysis of regional drug exposure in the brain. Biochem Pharmacol. 2009;78:1052–9.

    Article  CAS  PubMed  Google Scholar 

  76. Mrzilkova J, Zach P, Bartos A, Tintera J, Ripova D. Volumetric analysis of the pons, cerebellum and hippocampi in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord. 2012;34:224–34.

    Article  PubMed  Google Scholar 

  77. van de Haar HJ, Burgmans S, Jansen JF, van Osch MJ, van Buchem MA, Muller M, et al. Blood-brain barrier leakage in patients with early Alzheimer disease. Radiology. 2016;281:527–35.

    Article  Google Scholar 

  78. Wang H, Golob EJ, Su MY. Vascular volume and blood-brain barrier permeability measured by dynamic contrast enhanced MRI in hippocampus and cerebellum of patients with MCI and normal controls. J Magn Reson Imaging. 2006;24:695–700.

    Article  PubMed  Google Scholar 

  79. Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85:296–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Suzuki R, Nitsch C, Fujiwara K, Klatzo I. Regional changes in cerebral blood flow and blood-brain barrier permeability during epileptiform seizures and in acute hypertension in rabbits. J Cereb Blood Flow Metab. 1984;4:96–102.

    Article  CAS  PubMed  Google Scholar 

  81. Phares TW, Kean RB, Mikheeva T, Hooper DC. Regional differences in blood-brain barrier permeability changes and inflammation in the apathogenic clearance of virus from the central nervous system. J Immunol. 2006;176:7666–75.

    Article  CAS  PubMed  Google Scholar 

  82. Brown RC, Egleton RD, Davis TP. Mannitol opening of the blood-brain barrier: regional variation in the permeability of sucrose, but not 86Rb+ or albumin. Brain Res. 2004;1014:221–7.

    Article  CAS  PubMed  Google Scholar 

  83. Qosa H, Abuasal BS, Romero IA, Weksler B, Couraud PO, Keller JN, et al. Differences in amyloid-β clearance across mouse and human blood-brain barrier models: kinetic analysis and mechanistic modeling. Neuropharmacology. 2014;79C:668–78.

  84. Deane R, Sagare A, Zlokovic BV. The role of the cell surface LRP and soluble LRP in blood-brain barrier Abeta clearance in Alzheimer’s disease. Curr Pharm Des. 2008;14:1601–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Deane R, Wu Z, Sagare A, Davis J, Du Yan S, Hamm K, et al. LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron. 2004;43:333–44.

  86. Sagare A, Deane R, Bell RD, Johnson B, Hamm K, Pendu R, et al. Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med. 2007;13:1029–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, et al. apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest. 2008;118:4002–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bachmeier C, Paris D, Beaulieu-Abdelahad D, Mouzon B, Mullan M, Crawford F. A multifaceted role for apoE in the clearance of beta-amyloid across the blood-brain barrier. Neurodegener Dis. 2013;11:13–21.

    Article  PubMed  CAS  Google Scholar 

  89. Li Y, Lu W, Marzolo MP, Bu G. Differential functions of members of the low density lipoprotein receptor family suggested by their distinct endocytosis rates. J Biol Chem. 2001;276:18000–6.

    Article  CAS  PubMed  Google Scholar 

  90. Jaeger LB, Dohgu S, Hwang MC, Farr SA, Murphy MP, Fleegal-DeMotta MA, et al. Testing the neurovascular hypothesis of Alzheimer's disease: LRP-1 antisense reduces blood-brain barrier clearance, increases brain levels of amyloid-β protein, and impairs cognition. J Alzheimers Dis. 2009;17:553–70.

  91. Chalmers KA, Barker R, Passmore PA, Panza F, Seripa D, Solfrizzi V, et al. LRP-1 variation is not associated with risk of Alzheimer’s disease. Int J Mol Epidemiol Genet. 2010;1:104–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976;455:152–62.

    Article  CAS  PubMed  Google Scholar 

  93. Cordon-Cardo C, O’Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA. 1989;86:695–8.

  94. Chin JE, Soffir R, Noonan KE, Choi K, Roninson IB. Structure and expression of the human MDR (P-glycoprotein) gene family. Mol Cell Biol. 1989;9:3808–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA. 1987;84:7735–8.

  96. Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci USA. 1987;84:265–9.

  97. Callaghan R. Providing a molecular mechanism for P-glycoprotein; why would I bother? Biochem Soc Trans. 2015;43:995–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nicolazzo JA, Banks WA. Decreased blood-brain barrier expression of P-glycoprotein in Alzheimer’s disease: impact on pathogenesis and brain access of therapeutic agents. Ther Deliv. 2011;2:841–4.

    Article  CAS  PubMed  Google Scholar 

  99. Schinkel AH, Mol CA, Wagenaar E, van Deemter L, Smit JJ, Borst P. Multidrug resistance and the role of P-glycoprotein knockout mice. Eur J Cancer. 1995;31A:1295–8.

    Article  CAS  PubMed  Google Scholar 

  100. Lagas JS, Vlaming ML, Schinkel AH. Pharmacokinetic assessment of multiple ATP-binding cassette transporters: the power of combination knockout mice. Mol Interv. 2009;9:136–45.

    Article  CAS  PubMed  Google Scholar 

  101. Borst P, Schinkel AH. P-glycoprotein ABCB1: a major player in drug handling by mammals. J Clin Invest. 2013;123:4131–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lam FC, Liu R, Lu P, Shapiro AB, Renoir JM, Sharom FJ, et al. Beta-amyloid efflux mediated by p-glycoprotein. J Neurochem. 2001;76:1121–8.

    Article  CAS  PubMed  Google Scholar 

  103. Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, et al. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest. 2005;115:3285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kuhnke D, Jedlitschky G, Grube M, Krohn M, Jucker M, Mosyagin I, et al. MDR1-P-glycoprotein (ABCB1) mediates transport of Alzheimer’s amyloid-beta peptides—implications for the mechanisms of Abeta clearance at the blood-brain barrier. Brain Pathol. 2007;17:347–53.

    Article  CAS  PubMed  Google Scholar 

  105. Wang W, Bodles-Brakhop AM, Barger SW. A role for P-glycoprotein in clearance of Alzheimer amyloid β-peptide from the brain. Curr Alzheimer Res. 2016;13:615–20.

  106. Vogelgesang S, Cascorbi I, Schroeder E, Pahnke J, Kroemer HK, Siegmund W, et al. Deposition of Alzheimer’s beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics. 2002;12:535–41.

    Article  CAS  PubMed  Google Scholar 

  107. Chiu C, Miller MC, Monahan R, Osgood DP, Stopa EG, Silverberg GD. P-glycoprotein expression and amyloid accumulation in human aging and Alzheimer’s disease: preliminary observations. Neurobiol Aging. 2015;36:2475–82.

    Article  CAS  PubMed  Google Scholar 

  108. Wijesuriya HC, Bullock JY, Faull RL, Hladky SB, Barrand MA. ABC efflux transporters in brain vasculature of Alzheimer’s subjects. Brain Res. 2010;1358:228–38.

    Article  CAS  PubMed  Google Scholar 

  109. Deo AK, Borson S, Link JM, Domino K, Eary JF, Ke B, et al. Activity of P-glycoprotein, a β-Amyloid transporter at the blood-brain barrier, is compromised in patients with mild Alzheimer disease. J Nucl Med. 2014;55:1106–11.

  110. Hartz AM, Miller DS, Bauer B. Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-beta in a mouse model of Alzheimer’s disease. Mol Pharmacol. 2010;77:715–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hartz AM, Zhong Y, Wolf A, LeVine H 3rd, Miller DS, Bauer B. Aβ40 reduces P-glycoprotein at the blood-brain barrier through the ubiquitin-proteasome pathway. J Neurosci. 2016;36:1930–41.

  112. Park R, Kook SY, Park JC, Mook-Jung I. Aβ1-42 reduces P-glycoprotein in the blood-brain barrier through RAGE-NF-kappaB signaling. Cell Death Dis. 2014;5:e1299.

  113. Qosa H, LeVine 3rd H, Keller JN, Kaddoumi A. Mixed oligomers and monomeric amyloid-β disrupts endothelial cells integrity and reduces monomeric amyloid-beta transport across hCMEC/D3 cell line as an in vitro blood-brain barrier model. Biochim Biophys Acta. 1842;2014:1806–15.

  114. Magdesian MH, Carvalho MM, Mendes FA, Saraiva LM, Juliano MA, Juliano L, et al. Amyloid-beta binds to the extracellular cysteine-rich domain of Frizzled and inhibits Wnt/beta-catenin signaling. J Biol Chem. 2008;283:9359–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Toledo JB, Shaw LM, Trojanowski JQ. Plasma amyloid beta measurements—a desired but elusive Alzheimer’s disease biomarker. Alzheimers Res Ther. 2013;5:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sotolongo-Grau O, Pesini P, Valero S, Lafuente A, Buendia M, Perez-Grijalba V, et al. Association between cell-bound blood amyloid-β(1-40) levels and hippocampus volume. Alzheimers Res Ther. 2014;6:56.

  117. Rembach A, Faux NG, Watt AD, Pertile KK, Rumble RL, Trounson BO, et al. Changes in plasma amyloid beta in a longitudinal study of aging and Alzheimer’s disease. Alzheimers Dement. 2014;10:53–61.

    Article  PubMed  Google Scholar 

  118. Janelidze S, Stomrud E, Palmqvist S, Zetterberg H, van Westen D, Jeromin A, et al. Plasma β-amyloid in Alzheimer’s disease and vascular disease. Sci Rep. 2016;6:26801.

  119. Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med. 2003;9:907–13.

    Article  CAS  PubMed  Google Scholar 

  120. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature. 1996;382:685–91.

    Article  CAS  PubMed  Google Scholar 

  121. Krohn M, Lange C, Hofrichter J, Scheffler K, Stenzel J, Steffen J, et al. Cerebral amyloid-β proteostasis is regulated by the membrane transport protein ABCC1 in mice. J Clin Invest. 2011;121:3924–31.

  122. Tai LM, Loughlin AJ, Male DK, Romero IA. P-glycoprotein and breast cancer resistance protein restrict apical-to-basolateral permeability of human brain endothelium to amyloid-beta. J Cereb Blood Flow Metab. 2009;29:1079–83.

    Article  CAS  PubMed  Google Scholar 

  123. Do TM, Noel-Hudson MS, Ribes S, Besengez C, Smirnova M, Cisternino S, et al. ABCG2- and ABCG4-mediated efflux of amyloid-β peptide 1-40 at the mouse blood-brain barrier. J Alzheimers Dis. 2012;30:155–66.

  124. Xiong H, Callaghan D, Jones A, Bai J, Rasquinha I, Smith C, et al. ABCG2 is upregulated in Alzheimer’s brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for Abeta(1-40) peptides. J Neurosci. 2009;29:5463–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Clifford PM, Zarrabi S, Siu G, Kinsler KJ, Kosciuk MC, Venkataraman V, et al. Abeta peptides can enter the brain through a defective blood-brain barrier and bind selectively to neurons. Brain Res. 2007;1142:223–36.

    Article  CAS  PubMed  Google Scholar 

  126. Maness LM, Banks WA, Podlisny MB, Selkoe DJ, Kastin AJ. Passage of human amyloid beta-protein 1-40 across the murine blood-brain barrier. Life Sci. 1994;55:1643–50.

    Article  CAS  PubMed  Google Scholar 

  127. Martyn CN, Barker DJ, Osmond C, Harris EC, Edwardson JA, Lacey RF. Geographical relation between Alzheimer’s disease and aluminum in drinking water. Lancet. 1989;1:59–62.

    CAS  PubMed  Google Scholar 

  128. Banks WA, Niehoff ML, Drago D, Zatta P. Aluminum complexing enhances amyloid beta protein penetration of blood-brain barrier. Brain Res. 2006;1116:215–21.

    Article  CAS  PubMed  Google Scholar 

  129. Pluta R, Barcikowska M, Januszewski S, Misicka A, Lipkowski AW. Evidence of blood-brain barrier permeability/leakage for circulating human Alzheimer’s beta-amyloid-(1-42)-peptide. Neuroreport. 1996;7:1261–5.

    Article  CAS  PubMed  Google Scholar 

  130. Kalaria RN. The role of cerebral ischemia in Alzheimer’s disease. Neurobiol Aging. 2000;21:321–30.

    Article  CAS  PubMed  Google Scholar 

  131. Pluta R, Jablonski M, Ulamek-Koziol M, Kocki J, Brzozowska J, Januszewski S, et al. Sporadic Alzheimer’s disease begins as episodes of brain ischemia and ischemically dysregulated Alzheimer’s disease genes. Mol Neurobiol. 2013;48:500–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tamaki C, Ohtsuki S, Iwatsubo T, Hashimoto T, Yamada K, Yabuki C, et al. Major involvement of low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid beta-peptide by the liver. Pharm Res. 2006;23:1407–16.

    Article  CAS  PubMed  Google Scholar 

  133. Hone E, Martins IJ, Fonte J, Martins RN. Apolipoprotein E influences amyloid-beta clearance from the murine periphery. J Alzheimers Dis. 2003;5:1–8.

    Article  CAS  PubMed  Google Scholar 

  134. Ghiso J, Shayo M, Calero M, Ng D, Tomidokoro Y, Gandy S, et al. Systemic catabolism of Alzheimer’s Abeta40 and Abeta42. J Biol Chem. 2004;279:45897–908.

    Article  CAS  PubMed  Google Scholar 

  135. Marques MA, Kulstad JJ, Savard CE, Green PS, Lee SP, Craft S, et al. Peripheral amyloid-beta levels regulate amyloid-beta clearance from the central nervous system. J Alzheimers Dis. 2009;16:325–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Henderson SJ, Andersson C, Narwal R, Janson J, Goldschmidt TJ, Appelkvist P, et al. Sustained peripheral depletion of amyloid-β with a novel form of neprilysin does not affect central levels of amyloid-β. Brain. 2014;137:553–64.

  137. Georgievska B, Gustavsson S, Lundkvist J, Neelissen J, Eketjall S, Ramberg V, et al. Revisiting the peripheral sink hypothesis: inhibiting BACE1 activity in the periphery does not alter β-amyloid levels in the CNS. J Neurochem. 2015;132:477–86.

  138. Mehta DC, Short JL, Hilmer SN, Nicolazzo JA. Drug access to the central nervous system in Alzheimer’s disease: preclinical and clinical insights. Pharm Res. 2015;32:819–39.

    Article  CAS  PubMed  Google Scholar 

  139. Claudio L. Ultrastructural features of the blood-brain barrier in biopsy tissue from Alzheimer’s disease patients. Acta Neuropathol. 1996;91:6–14.

    Article  CAS  PubMed  Google Scholar 

  140. Farkas E, De Jong GI, de Vos RA, Jansen Steur EN, Luiten PG. Pathological features of cerebral cortical capillaries are doubled in Alzheimer’s disease and Parkinson’s disease. Acta Neuropathol. 2000;100:395–402.

    Article  CAS  PubMed  Google Scholar 

  141. Abuznait AH, Kaddoumi A. Role of ABC transporters in the pathogenesis of Alzheimer’s disease. ACS Chem Neurosci. 2012;3:820–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Schuff N, Matsumoto S, Kmiecik J, Studholme C, Du A, Ezekiel F, et al. Cerebral blood flow in ischemic vascular dementia and Alzheimer’s disease, measured by arterial spin-labeling magnetic resonance imaging. Alzheimers Dement. 2009;5:454–62.

    Article  PubMed  PubMed Central  Google Scholar 

  143. den Abeelen AS, Lagro J, van Beek AH, Claassen JA. Impaired cerebral autoregulation and vasomotor reactivity in sporadic Alzheimer’s disease. Curr Alzheimer Res. 2014;11:11–7.

    Article  CAS  Google Scholar 

  144. Leeuwis AE, Benedictus MR, Kuijer JP, Binnewijzend MA, Hooghiemstra AM, Verfaillie SC, et al. Lower cerebral blood flow is associated with impairment in multiple cognitive domains in Alzheimer’s disease. Alzheimers Dement. 2016

  145. Spulber S, Bogdanovic N, Romanitan MO, Bajenaru OA, Popescu BO. Claudin expression profile separates Alzheimer’s disease cases from normal aging and from vascular dementia cases. J Neurol Sci. 2012;322:184–6.

    Article  CAS  PubMed  Google Scholar 

  146. Kawamura A, Baitsch D, Telgmann R, Feuerborn R, Weissen-Plenz G, Hagedorn C, et al. Apolipoprotein E interrupts interleukin-1beta signaling in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2007;27:1610–7.

    Article  CAS  PubMed  Google Scholar 

  147. Bien-Ly N, Boswell CA, Jeet S, Beach TG, Hoyte K, Luk W, et al. Lack of widespread BBB disruption in Alzheimer’s disease models: focus on therapeutic antibodies. Neuron. 2015;88:289–97.

    Article  CAS  PubMed  Google Scholar 

  148. Kragh-Hansen U, Minchiotti L, Galliano M, Peters Jr T. Human serum albumin isoforms: genetic and molecular aspects and functional consequences. Biochim Biophys Acta. 1830;2013:5405–17.

    Google Scholar 

  149. Terp BN, Cooper DN, Christensen IT, Jorgensen FS, Bross P, Gregersen N, et al. Assessing the relative importance of the biophysical properties of amino acid substitutions associated with human genetic disease. Hum Mutat. 2002;20:98–109.

    Article  CAS  PubMed  Google Scholar 

  150. Yang Y, Engkvist O, Llinas A, Chen H. Beyond size, ionization state, and lipophilicity: influence of molecular topology on absorption, distribution, metabolism, excretion, and toxicity for druglike compounds. J Med Chem. 2012;55:3667–77.

    Article  CAS  PubMed  Google Scholar 

  151. Palm K, Luthman K, Ungell AL, Strandlund G, Artursson P. Correlation of drug absorption with molecular surface properties. J Pharm Sci. 1996;85:32–9.

    Article  CAS  PubMed  Google Scholar 

  152. Do TM, Dodacki A, Alata W, Calon F, Nicolic S, Scherrmann JM, et al. Age-dependent regulation of the blood-brain barrier influx/efflux equilibrium of Amyloid-β peptide in a mouse model of Alzheimer’s disease (3xTg-AD). J Alzheimers Dis. 2016;49:287–300.

  153. Daiello LA, Stopa EG, Ott BR, de la Monte S, Johanson CE. CNS molecular gradients in mild cognitive impairment and Alzheimer’s disease: implications for blood-brain barrier permeability. Alzheimers Dement. 2016;12:P1149.

    Article  Google Scholar 

  154. Janelidze S, Hertze J, Nagga K, Nilsson K, Nilsson C, Wennstrom M, et al. Increased blood-brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype. Neurobiol Aging. 2016;51:104–12.

    Article  PubMed  CAS  Google Scholar 

  155. Takechi R, Galloway S, Pallebage-Gamarallage MM, Mamo JC. Chylomicron amyloid-beta in the aetiology of Alzheimer’s disease. Atheroscler Suppl. 2008;9:19–25.

    Article  CAS  PubMed  Google Scholar 

  156. Poduslo JF, Curran GL, Wengenack TM, Malester B, Duff K. Permeability of proteins at the blood-brain barrier in the normal adult mouse and double transgenic mouse model of Alzheimer’s disease. Neurobiol Dis. 2001;8:555–67.

    Article  CAS  PubMed  Google Scholar 

  157. Ryu JK, McLarnon JG. A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J Cell Mol Med. 2009;13:2911–25.

    Article  CAS  PubMed  Google Scholar 

  158. Ujiie M, Dickstein DL, Carlow DA, Jefferies WA. Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation. 2003;10:463–70.

    CAS  PubMed  Google Scholar 

  159. Bourasset F, Ouellet M, Tremblay C, Julien C, Do TM, Oddo S, et al. Reduction of the cerebrovascular volume in a transgenic mouse model of Alzheimer’s disease. Neuropharmacology. 2009;56:808–13.

    Article  CAS  PubMed  Google Scholar 

  160. Mehta DC, Short JL, Nicolazzo JA. Altered brain uptake of therapeutics in a triple transgenic mouse model of Alzheimer’s disease. Pharm Res. 2013;30:2868–79.

    Article  CAS  PubMed  Google Scholar 

  161. Opazo C, Luza S, Villemagne VL, Volitakis I, Rowe C, Barnham KJ, et al. Radioiodinated clioquinol as a biomarker for beta-amyloid: Zn complexes in Alzheimer’s disease. Aging Cell. 2006;5:69–79.

    Article  CAS  PubMed  Google Scholar 

  162. Adlard PA, Cherny RA, Finkelstein DI, Gautier E, Robb E, Cortes M, et al. Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron. 2008;59:43–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Mitchell P. McInerney is supported by an Australian Government Research Training Program Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Nicolazzo.

Additional information

Guest Editors: Marilyn E. Morris and Jean-Michel Scherrmann

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McInerney, M.P., Short, J.L. & Nicolazzo, J.A. Neurovascular Alterations in Alzheimer’s Disease: Transporter Expression Profiles and CNS Drug Access. AAPS J 19, 940–956 (2017). https://doi.org/10.1208/s12248-017-0077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0077-5

Key words

Navigation