Skip to main content
Log in

Nanomedicine Drug Development: A Scientific Symposium Entitled “Charting a Roadmap to Commercialization”

  • Meeting Report
  • Theme: Nanotechnology in Drug Development
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The use of nanotechnology in medicine holds great promise for revolutionizing a variety of therapies. The past decade witnessed dramatic advancements in scientific research in nanomedicines, although significant challenges still exist in nanomedicine design, characterization, development, and manufacturing. In March 2013, a two-day symposium “Nanomedicines: Charting a Roadmap to Commercialization,” sponsored and organized by the Nanomedicines Alliance, was held to facilitate better understanding of the current science and investigative approaches and to identify and discuss challenges and knowledge gaps in nanomedicine development programs. The symposium provided a forum for constructive dialogue among key stakeholders in five distinct areas: nanomedicine design, preclinical pharmacology, toxicology, CMC (chemistry, manufacturing, and control), and clinical development. In this meeting synopsis, we highlight key points from plenary presentations and focus on discussions and recommendations from breakout sessions of the symposium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Heath JR, Davis ME. Nanotechnology and cancer. Annu Rev Med. 2008;59:251–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7:771–82.

    Article  CAS  PubMed  Google Scholar 

  3. Heidel JD, Davis ME. Clinical developments in nanotechnology for cancer therapy. Pharm Res. 2011;28:187–99.

    Article  CAS  PubMed  Google Scholar 

  4. Vlashi E, Kelderhouse LE, Sturgis JE, Low PS. Effect of folate-targeted nanoparticle size on their rates of penetration into solid tumors. ACS Nano. 2013;7(10):8573–82. doi:10.1021/nn402644g.

    Article  CAS  PubMed  Google Scholar 

  5. Chickering 3rd DE, Harris WP, Mathiowitz E. A microtensiometer for the analysis of bioadhesive microspheres. Biomed Instrum Technol. 1995;29(6):501–12.

    PubMed  Google Scholar 

  6. Mathiowitz E, Jacob J, Jong Y, Carino G, Chickering D, Chaturvedi P, et al. Biologically erodable microspheres as potential oral drug delivery systems. Nature. 1997;386:410–4.

    Article  CAS  PubMed  Google Scholar 

  7. Ensign LM, Tang BC, Wang YY, Tse TA, Hoen T, Cone R, et al. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci Transl Med. 2012;4(138):138ra79. doi:10.1126/scitranslmed.3003453.

    Article  PubMed  Google Scholar 

  8. Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73(8):2412–7. doi:10.1158/0008-5472.CAN-12-4561.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Bendele A, Seely J, Richey C, Sennello G, Shopp G. Renal tubular vacuolation in animals treated with polyethylene-glycol-conjugated proteins. Toxicol Sci. 1998;42(2):152–7.

    Article  CAS  PubMed  Google Scholar 

  10. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Chu KS, Hasan W, Rawal S, Walsh MD, Enlow EM, Luft JC, et al. Plasma, tumor and tissue pharmacokinetics of Docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma zenograft. Nanomedicine. 2013;9(5):686–93.

    CAS  PubMed  Google Scholar 

  12. Jones SW, Roberts RA, Robbins GR, Perry JL, Kai MP, Chen K, et al. Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. J Clin Invest. 2013;123(7):3061–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Perry JL, Reuter KG, Kai MP, Herlihy KP, Jones SW, Luft JC, et al. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 2012;12(10):5304–10.

    Article  CAS  PubMed  Google Scholar 

  14. Caron WP, Morgan KP, Zamboni BA, et al. A review of study designs and outcomes of phase I clinical studies of nanoparticle agents compared with small-molecule anticancer agents. Clin Cancer Res. 2013;19(12):3309–15. doi:10.1158/1078-0432.CCR-12-3649.

    Article  CAS  PubMed  Google Scholar 

  15. Crist RM, Grossman JH, Patri AK, Stern ST, Dobrovolskaia MA, Adiseshaiah PP, et al. Common pitfalls in nanotechnology: lessons learned from NCI’s nanotechnology characterization laboratory. Integr Biol (Camb). 2013;5(1):66–73. doi:10.1039/c2ib20117h.

    Article  CAS  Google Scholar 

  16. Dobrovolskaia MA, McNeil S. Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release. 2013;172(2):456–66.

    Article  CAS  PubMed  Google Scholar 

  17. Casinghino S, Gauthier L, McClintok D, Boldenow E, Nauman C, Freeman G, et al. In vitro methods to predict immune-mediated toxicities of dextran-based nanomaterial precursors in rats. Toxicologist. 2009;108(1):178.

    Google Scholar 

  18. Kummar S, Kinders R, Gutierrez ME, et al. Phase 0 clinical trial of the poly (ADP-ribose) polymerase inhibitor ABT-888 in patients with advanced malignancies. J Clin Oncol. 2009;27:2705–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Stathopoulos GP, Antoniou D, Dimitroulis J, Michalopoulou P, Bastas A, Marosis K, et al. Liposomal cisplatin combined with paclitaxel versus cisplatin and paclitaxel in non-small-cell lung cancer: a randomized phase III multicenter trial. Ann Oncol. 2010;21:2227–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Harada M, Bobe I, Saito H, Shibata N, Tanaka R, Hayashi T, et al. Improved anti-tumor activity of stabilized anthracycline polymeric micelle formulation, NC-6300. Cancer Sci. 2011;102(1):192–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the symposium presenters for sharing their data, case studies, and insights and the secretariat of the Nanomedicines Alliance for their excellent skills in organizing the symposium, for serving as scribes for breakout discussions, and for assistance in the preparation of this manuscript. The Nanomedicines Alliance Board of Directors critically reviewed this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Liu.

Additional information

Guest Editors: Nakissa Sadrieh and Banu Zolnik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finch, G., Havel, H., Analoui, M. et al. Nanomedicine Drug Development: A Scientific Symposium Entitled “Charting a Roadmap to Commercialization”. AAPS J 16, 698–704 (2014). https://doi.org/10.1208/s12248-014-9608-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9608-5

Keywords

Navigation