Skip to main content
Log in

Population Pharmacodynamic Modeling of Hyperglycemic Clamp and Meal Tolerance Tests in Patients with Type 2 Diabetes Mellitus

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

In this study, glucose and insulin concentration–time profiles in subjects with type 2 diabetes mellitus (T2DM) under meal tolerance test (MTT) and hyperglycemic clamp (HGC) conditions were co-modeled simultaneously. Blood glucose and insulin concentrations were obtained from 20 subjects enrolled in a double-blind, placebo-controlled, randomized, two-way crossover study. Patients were treated with palosuran or placebo twice daily for 4 weeks and then switched to the alternative treatment after a 4-week washout period. The MTT and HGC tests were performed 1 h after drug administration on days 28 and 29 of each treatment period. Population data analysis was performed using NONMEM. The HGC model incorporates insulin-dependent glucose clearance and glucose-induced insulin secretion. This model was extended for the MTT, in which glucose absorption was described using a transit compartment with a mean transit time of 62.5 min. The incretin effect (insulin secretion triggered by oral glucose intake) was also included, but palosuran did not influence insulin secretion or sensitivity. Glucose clearance was 0.164 L/min with intersubject and interoccasion variability of 9.57% and 31.8%. Insulin-dependent glucose clearance for the HGC was about 3-fold greater than for the MTT (0.0111 vs. 0.00425 L/min/[mU/L]). The maximal incretin effect was estimated to enhance insulin secretion 2-fold. The lack of palosuran effect coupled with a population-based analysis provided quantitative insights into the variability of glucose and insulin regulation in patients with T2DM following multiple glucose tolerance tests. Application of these models may also prove useful in antihyperglycemic drug development and assessing glucose–insulin homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979;237(3):E214–23.

    PubMed  CAS  Google Scholar 

  2. Saad MF, Steil GM, Kades WW, Ayad MF, Elsewafy WA, Boyadjian R, et al. Differences between the tolbutamide-boosted and the insulin-modified minimal model protocols. Diabetes. 1997;46(7):1167–71.

    Article  PubMed  CAS  Google Scholar 

  3. Yang YJ, Youn JH, Bergman RN. Modified protocols improve insulin sensitivity estimation using the minimal model. Am J Physiol. 1987;253(6 Pt 1):E595–602.

    PubMed  CAS  Google Scholar 

  4. Bergman RN. Minimal model: perspective from 2005. Horm Res. 2005;64 Suppl 3:8–15.

    Article  PubMed  CAS  Google Scholar 

  5. Bergman RN, Ider YZ, Bowden CR, Cobelli C. Quantitative estimation of insulin sensitivity. Am J Physiol. 1979;236(6):E667–77.

    PubMed  CAS  Google Scholar 

  6. Quon MJ, Cochran C, Taylor SI, Eastman RC. Non-insulin-mediated glucose disappearance in subjects with IDDM. Discordance between experimental results and minimal model analysis. Diabetes. 1994;43(7):890–6.

    Article  PubMed  CAS  Google Scholar 

  7. Elahi D. In praise of the hyperglycemic clamp. A method for assessment of beta-cell sensitivity and insulin resistance. Diabetes Care. 1996;19(3):278–86.

    Article  PubMed  CAS  Google Scholar 

  8. Del Prato S, Marchetti P, Bonadonna RC. Phasic insulin release and metabolic regulation in type 2 diabetes. Diabetes. 2002;51 Suppl 1:S109–16.

    Article  PubMed  Google Scholar 

  9. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487–95.

    Article  PubMed  Google Scholar 

  10. Clozel M, Binkert C, Birker-Robaczewska M, Boukhadra C, Ding SS, Fischli W, et al. Pharmacology of the urotensin-II receptor antagonist palosuran (ACT-058362; 1-[2-(4-benzyl-4-hydroxy-piperidin-1-yl)-ethyl]-3-(2-methyl-quinolin-4-yl)-urea sulfate salt): first demonstration of a pathophysiological role of the urotensin system. J Pharmacol Exp Ther. 2004;311(1):204–12.

    Article  PubMed  CAS  Google Scholar 

  11. Wenyi Z, Suzuki S, Hirai M, Hinokio Y, Tanizawa Y, Matsutani A, et al. Role of urotensin II gene in genetic susceptibility to type 2 diabetes mellitus in Japanese subjects. Diabetologia. 2003;46(7):972–6.

    Article  PubMed  CAS  Google Scholar 

  12. Clozel M, Hess P, Qiu C, Ding SS, Rey M. The urotensin-II receptor antagonist palosuran improves pancreatic and renal function in diabetic rats. J Pharmacol Exp Ther. 2006;316(3):1115–21.

    Article  PubMed  CAS  Google Scholar 

  13. Sidharta PN, van Giersbergen PL, Dingemanse J. Pharmacokinetics and pharmacodynamics of the urotensin-II receptor antagonist palosuran in healthy male subjects. J Clin Pharmacol. 2009;49(10):1168–75.

    Article  PubMed  CAS  Google Scholar 

  14. Sidharta PN, Rave K, Heinemann L, Chiossi E, Krahenbuhl S, Dingemanse J. Effect of the urotensin-II receptor antagonist palosuran on secretion of and sensitivity to insulin in patients with type 2 diabetes mellitus. Br J Clin Pharmacol. 2009;68(4):502–10.

    Article  PubMed  CAS  Google Scholar 

  15. Silber HE, Jauslin PM, Frey N, Gieschke R, Simonsson US, Karlsson MO. An integrated model for glucose and insulin regulation in healthy volunteers and type 2 diabetic patients following intravenous glucose provocations. J Clin Pharmacol. 2007;47(9):1159–71.

    Article  PubMed  CAS  Google Scholar 

  16. Mager DE, Abernethy DR, Egan JM, Elahi D. Exendin-4 pharmacodynamics: insights from the hyperglycemic clamp technique. J Pharmacol Exp Ther. 2004;311(2):830–5. doi:10.1124/jpet.104.069765.

    Article  PubMed  CAS  Google Scholar 

  17. Jauslin PM, Silber HE, Frey N, Gieschke R, Simonsson US, Jorga K, et al. An integrated glucose-insulin model to describe oral glucose tolerance test data in type 2 diabetics. J Clin Pharmacol. 2007;47(10):1244–55.

    Article  PubMed  CAS  Google Scholar 

  18. Roges OA, Baron M, Philis-Tsimikas A. The incretin effect and its potentiation by glucagon-like peptide 1-based therapies: a revolution in diabetes management. Expert Opin Investig Drugs. 2005;14(6):705–27. doi:10.1517/13543784.14.6.705.

    Article  PubMed  CAS  Google Scholar 

  19. Savic RM, Jonker DM, Kerbusch T, Karlsson MO. Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn. 2007;34(5):711–26.

    Article  PubMed  CAS  Google Scholar 

  20. Crandall JP, Oram V, Trandafirescu G, Reid M, Kishore P, Hawkins M, et al. Pilot study of resveratrol in older adults with impaired glucose tolerance. J Gerontol Ser A, Biol Sci Med Sci. 2012;67(12):1307–12. doi:10.1093/gerona/glr235.

    Article  Google Scholar 

  21. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368(9548):1696–705.

    Article  PubMed  CAS  Google Scholar 

  22. Karlsson MO, Sheiner LB. The importance of modeling interoccasion variability in population pharmacokinetic analyses. J Pharmacokinet Biopharm. 1993;21(6):735–50.

    Article  PubMed  CAS  Google Scholar 

  23. Potocka E, Baughman RA, Derendorf H. Population pharmacokinetic model of human insulin following different routes of administration. J Clin Pharmacol. 2011;51(7):1015–24. doi:10.1177/0091270010378520.

    Article  PubMed  CAS  Google Scholar 

  24. Toffolo G, Campioni M, Basu R, Rizza RA, Cobelli C. A minimal model of insulin secretion and kinetics to assess hepatic insulin extraction. Am J Physiol Endocrinol Metab. 2006;290(1):E169–76. doi:10.1152/ajpendo.00473.2004.

    Article  PubMed  CAS  Google Scholar 

  25. Halter JB, Ward WK, Porte Jr D, Best JD, Pfeifer MA. Glucose regulation in non-insulin-dependent diabetes mellitus. Interaction between pancreatic islets and the liver. Am J Med. 1985;79(2B):6–12.

    Article  PubMed  CAS  Google Scholar 

  26. Steil GM, Hwu CM, Janowski R, Hariri F, Jinagouda S, Darwin C, et al. Evaluation of insulin sensitivity and beta-cell function indexes obtained from minimal model analysis of a meal tolerance test. Diabetes. 2004;53(5):1201–7.

    Article  PubMed  CAS  Google Scholar 

  27. Sidharta PN, Wagner FD, Bohnemeier H, Jungnik A, Halabi A, Krahenbuhl S, et al. Pharmacodynamics and pharmacokinetics of the urotensin II receptor antagonist palosuran in macroalbuminuric, diabetic patients. Clin Pharmacol Ther. 2006;80(3):246–56. doi:10.1016/j.clpt.2006.05.013.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was financially supported by Actelion Pharmaceuticals Ltd.

Conflict of Interest

Drs. Dingemanse and Sidharta are employed by Actelion Pharmaceuticals Ltd. Drs. Hong and Mager report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald E. Mager.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, Y., Dingemanse, J., Sidharta, P. et al. Population Pharmacodynamic Modeling of Hyperglycemic Clamp and Meal Tolerance Tests in Patients with Type 2 Diabetes Mellitus. AAPS J 15, 1051–1063 (2013). https://doi.org/10.1208/s12248-013-9512-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-013-9512-4

KEY WORDS

Navigation