Skip to main content
Log in

Semi-mechanistic Modeling of the Interaction Between the Central and Peripheral Effects in the Antinociceptive Response to Lumiracoxib in Rats

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The model-based approach was undertaken to characterize the interaction between the peripheral and central antinociceptive effects exerted by lumiracoxib. The effects of intraplantar and intrathecal administrations and of fixed ratio combinations of lumiracoxib simultaneously administered by these two routes were evaluated using the formalin test in rats. Pain-related behavior data, quantified as the number of flinches of the injected paw, were analyzed using a population approach with NONMEM 7. The pain response during the first phase of the formalin test, which was insensitive to lumiracoxib, was modeled using a monoexponential decay. The second phase, which was sensitive to lumiracoxib, was described incorporating synthesis and degradation processes of pain mediators that were recruited locally after tissue injury. Upregulation at the local level and in the central nervous system (CNS) was set to be proportional to the predicted levels of pain mediators in the local (injured) compartment. Results suggest a greater role of upregulated COX-2Local in generating the pain response compared to COX-2CNS. Drug effects were described as inhibition of upregulated COX-2. The model adequately described the time course of nociception after formalin injection in the absence or presence of lumiracoxib administered locally and/or spinally. Data suggest that the overall response is the additive outcome of drug effects at the peripheral and central compartments, with predominance of peripheral mechanisms. Application of modeling opens new perspectives for understanding the overall mechanism of action of analgesic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. García-Rodríguez LA, Hernández-Díaz S. The risk of upper gastrointestinal complications associated with nonsteroidal anti-inflammatory drugs, glucocorticoids, acetaminophen, and combinations of these agents. Arthritis Res. 2001;3:98–101.

    Article  PubMed  Google Scholar 

  2. Crofford LJ. COX-1 and COX-2 tissue expression: implications and predictions. J Rheumatol. 1997;49(Suppl):15–9.

    CAS  Google Scholar 

  3. Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci U S A. 1999;96:7563–8.

    Article  PubMed  CAS  Google Scholar 

  4. Fu JY, Masferrer JL, Seibert K, Raz A, Needleman P. The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes. J Biol Chem. 1990;265:16737–40.

    PubMed  CAS  Google Scholar 

  5. Mysler E. Lumiracoxib (Prexige): a new selective COX-2 inhibitor. Int J Clin Pract. 2004;58:606–11.

    Article  PubMed  CAS  Google Scholar 

  6. Farkouh ME, Kirshner H, Harrington RA, Ruland S, Verheugt FW, Schnitzer TJ, et al. Comparison of lumiracoxib with naproxen and ibuprofen in the Therapeutic Arthritis Research and Gastrointestinal Event Trial (TARGET), cardiovascular outcomes: randomised controlled trial. Lancet. 2004;364:675–84.

    Article  PubMed  CAS  Google Scholar 

  7. Schnitzer TJ, Burmester GR, Mysler E, Hochberg MC, Doherty M, Ehrsam E, et al. Comparison of lumiracoxib with naproxen and ibuprofen in the Therapeutic Arthritis Research and Gastrointestinal Event Trial (TARGET), reduction in ulcer complications: randomised controlled trial. Lancet. 2004;364:665–74.

    Article  PubMed  CAS  Google Scholar 

  8. Hinz B, Brune K. Can drug removals involving cyclooxygenase-2 inhibitors be avoided? A plea for human pharmacology. Trends Pharmacol Sci. 2008;29:391–7.

    Article  PubMed  CAS  Google Scholar 

  9. Vásquez-Bahena DA, Salazar-Morales UE, Ortiz MI, Castañeda-Hernández G, Trocóniz IF. Pharmacokinetic-pharmacodynamic modelling of the analgesic effects of lumiracoxib, a selective inhibitor of cyclooxygenase-2, in rats. Br J Pharmacol. 2010;159:176–87.

    Article  PubMed  Google Scholar 

  10. Burian M, Geisslinger G. COX-dependent mechanisms involved in the antinociceptive action of NSAIDs at central and peripheral sites. Pharmacol Ther. 2005;107:139–54.

    Article  PubMed  CAS  Google Scholar 

  11. Jiménez-Andrade JM, Ortiz MI, Pérez-Urizar J, Aguirre-Bañuelos P, Granados-Soto V, Castañeda-Hernández G. Synergistic effects between codeine and diclofenac after local, spinal and systemic administration. Pharmacol Biochem Behav. 2003;76:463–71.

    Article  PubMed  Google Scholar 

  12. Ortiz MI, Lozano-Cuenca J, Granados-Soto V, Castañeda-Hernández G. Additive interaction between peripheral and central mechanisms involved in the antinociceptive effect of diclofenac in the formalin test in rats. Pharmacol Biochem Behav. 2008;91:32–7.

    Article  PubMed  CAS  Google Scholar 

  13. Lozano-Cuenca J, Castañeda-Hernández G, Granados-Soto V. Peripheral and spinal mechanisms of antinociceptive action of lumiracoxib. Pharmacol Biochem Behav. 2008;91:32–7.

    Article  PubMed  Google Scholar 

  14. Zimmermann M. Ethical guidelines for investigations on experimental pain in conscious animals. Pain. 1983;16:109–10.

    Article  PubMed  CAS  Google Scholar 

  15. Dubuisson D, Dennis SG. The formalin test: a quantitative study of the analgesic effect of morphine, meperidine, and brain stem stimulation in rats and cats. Pain. 1977;4:161–74.

    Article  PubMed  CAS  Google Scholar 

  16. Wheeler-Aceto H, Cowan A. Standardization of the rat paw formalin test for the evaluation of analgesics. Psychopharmacology. 1991;104:35–44.

    Article  PubMed  CAS  Google Scholar 

  17. Tallarida RJ. Drug synergism: its detection and applications. J Pharmacol Exp Ther. 2001;298:865–72.

    PubMed  CAS  Google Scholar 

  18. Grabovsky Y, Tallarida RJ. Isobolographic analysis for combinations of a full and partial agonist: curved isoboles. J Pharmacol Exp Ther. 2004;310:981–6.

    Article  PubMed  CAS  Google Scholar 

  19. Ludden TM, Beal SL, Sheiner LB. Comparison of the Akaike Information Criterion, the Schwarz criterion and the F test as guides to model selection. J Pharmacokinet Biopharm. 1994;22:431–45.

    PubMed  CAS  Google Scholar 

  20. Tegeder I, Niederberger E, Vetter G, Bräutigam L, Geisslinger G. Effects of selective COX-1 and -2 inhibition on formalin-evoked nociceptive behaviour and prostaglandin E(2) release in the spinal cord. J Neurochem. 2001;79:777–86.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang FY, Wan Y, Zhang ZK, Light AR, Fu KY. Peripheral formalin injection induces long-lasting increases in cyclooxygenase 1 expression by microglia in the spinal cord. J Pain. 2007;8:110–7.

    Article  PubMed  CAS  Google Scholar 

  22. Savic RM, Jonker DM, Kerbusch T, Karlsson MO. Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn. 2007;34:711–26.

    Article  PubMed  CAS  Google Scholar 

  23. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, Bonventre JV, Woolf CJ. Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature. 2001;410:471–5.

    Article  PubMed  CAS  Google Scholar 

  24. Raffa RB, Stone Jr DJ, Tallarida RJ. Discovery of “self-synergistic” spinal/supraspinal antinociception produced by acetaminophen (paracetamol). J Pharmacol Exp Ther. 2000;295(1):291–4.

    PubMed  CAS  Google Scholar 

  25. Pozos-Guillén AJ, Aguirre-Bañuelos P, Arellano-Guerrero A, Castañeda-Hernández G, Hoyo-Vadillo C, Pérez-Urizar J. Isobolographic analysis of the dual-site synergism in the antinociceptive response of tramadol in the formalin test in rats. Life Sci. 2006;79:2275–82.

    Article  PubMed  Google Scholar 

  26. Josa M, Urizar JP, Rapado J, Dios-Viéitez C, Castañeda-Hernández G, Flores-Murrieta F, et al. Pharmacokinetic/pharmacodynamic modeling of antipyretic and anti-inflammatory effects of naproxen in the rat. J Pharmacol Exp Ther. 2001;297:198–205.

    PubMed  CAS  Google Scholar 

  27. Beier H, Garrido MJ, Christoph T, Kasel D, Trocóniz IF. Semi-mechanistic pharmacokinetic/pharmacodynamic modelling of the antinociceptive response in the presence of competitive antagonism: the interaction between tramadol and its active metabolite on micro-opioid agonism and monoamine reuptake inhibition, in the rat. Pharm Res. 2008;25:1789–97.

    Article  PubMed  CAS  Google Scholar 

  28. Giraudel JM, Diquelou A, Laroute V, Lees P, Toutain PL. Pharmacokinetic/pharmacodynamic modelling of NSAIDs in a model of reversible inflammation in the cat. Br J Pharmacol. 2005;146:642–53.

    Article  PubMed  CAS  Google Scholar 

  29. Trocóniz IF, Plan EL, Miller R, Karlsson MO. Modelling overdispersion and Markovian features in count data. J Pharmacokinet Pharmacodyn. 2009;36:461–77.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Q.F.B. Martha Patricia Gonzáles García for her technical support. Dalia Angélica Vásquez Bahena is a CONACyT fellow with grant number 207023.

Conflict of Interests

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iñaki F. Trocóniz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vélez de Mendizábal, N., Vásquez-Bahena, D., Jiménez-Andrade, J.M. et al. Semi-mechanistic Modeling of the Interaction Between the Central and Peripheral Effects in the Antinociceptive Response to Lumiracoxib in Rats. AAPS J 14, 904–914 (2012). https://doi.org/10.1208/s12248-012-9405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-012-9405-y

KEY WORDS

Navigation