Skip to main content
Log in

Comparison of Drug Permeabilities and BCS Classification: Three Lipid-Component PAMPA System Method versus Caco-2 Monolayers

  • Brief/Technical Note
  • Published:
The AAPS Journal Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Teksin ZS, Hom K, Balakrishnan A, Polli JE. Apparent ion pair-mediated transport of metoprolol across a three lipid component PAMPA system. J Control Rel. 2006;116:50–7.

    Article  CAS  Google Scholar 

  2. Kerns EH, Li D, Petusky S, Farris M, Ley R, Jupp P. Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. J Pharm Sci. 2004;93(6):1440–53.

    Article  CAS  PubMed  Google Scholar 

  3. Avdeef A, Strafford M, Block E, Balogh MP, Chambliss W, Khan I. Drug absorption in vitro model: filter-immobilized artificial membranes. 2. Studies of the permeability properties of lactones in piper methysticum Forst. Eur J Pharm Sci. 2001;14:271–80.

    Article  CAS  PubMed  Google Scholar 

  4. Wohnsland F, Faller B. Permeability pH profile and high-throughput alkane/water log P artificial membranes. J Med Chem. 2001;44:923–30.

    Article  CAS  PubMed  Google Scholar 

  5. Seo PR, Teksin ZS, Kao JPY, Polli JE. Lipid composition effect on permeability across PAMPA. Eur J Pharm Sci. 2006;29:259–68.

    Article  CAS  PubMed  Google Scholar 

  6. Sugano K, Nabuchi Y, Machida M, Asoh Y. Permeation characteristics of a hydrophilic basic compound across a bio-mimetic artificial membrane. Int J Pharm. 2004;275:271–78.

    Article  CAS  PubMed  Google Scholar 

  7. Palm K, Luthman K, Ros J, Grasjo J, Artursson P. Effect of molecular charge on intestinal epithelial drug transport: pH-dependent transport of cationic drugs. J Pharmacol Exp Ther. 1999;291:435–43.

    CAS  PubMed  Google Scholar 

  8. Hwang K, Martin NE, Jiang L, Zhu C. Permeation prediction of M100240 using the parallel artificial membrane permeability assay. J Pharm Sci. 2003;6(3):315–20.

    CAS  Google Scholar 

  9. Polli JE, Ginski MJ. Human drug absorption kinetics and comparison to Caco-2 monolayer permeabilities. Pharm Res. 1998;15:47–52.

    Article  CAS  PubMed  Google Scholar 

  10. Tolle-Sander S, Grill A, Joshi H, Kapil R, Persiani S, Polli JE. Characterization of dexloxiglumide in vitro biopharmaceutic properties and active transport. J Pharm Sci. 2003;92:1968–80.

    Article  CAS  PubMed  Google Scholar 

  11. Bermejo M, Avdeef A, Ruiz A, Nalda R, Ruell JA, Tsinman O, et al. PAMPA-a drug absorption in vitro model 7. Comparing rat in situ, Caco-2, and PAMPA permeability of fluoroquinolones. Eur J Pharm Sci. 2004;21:429–41.

    Article  CAS  PubMed  Google Scholar 

  12. Fujikawa M, Ano R, Nakao K, Shimizu R, Akamatsu M. Relationships between structure and high-throughput screening permeability of diverse drugs with artificial membranes: application to prediction of Caco-2 cell permeability. Bioorg Med Chem. 2005;13:4721–732.

    Article  CAS  PubMed  Google Scholar 

  13. Avdeef A, Artursson P, Neuhoff S, Lazorova L, Grasjö J, Tavelin S. Caco-2 permeability of weakly basic drugs predicted with the double-sink PAMPA pKa(flux) method. Eur J Pharm Sci. 2005;24:333–49.

    Article  CAS  PubMed  Google Scholar 

  14. Masungi C, Mensch J, Van Dijck A, Borremans C, Willems B, Mackie C, et al. Parallel artificial membrane permeability assay (PAMPA) combined with a 10-day multiscreen Caco-2 cell culture as a tool for assessing new drug candidates. Pharmazie. 2008;63:194–99.

    CAS  PubMed  Google Scholar 

  15. Koljonen M, Rousu K, Cierny J, Kaukonen A, Hirvonen J. Transport evaluation of salicylic acid and structurally related compounds across Caco-2 cell monolayers and artificial PAMPA membranes. Eur J Pharm Biopharm. 2008;70:531–8.

    Article  CAS  PubMed  Google Scholar 

  16. Corti G, Maestrelli F, Cirri M, Zerrouk N, Mura P. Development and evaluation of an in vitro method for prediction of human drug absorption II. Demonstration of the method suitability. Eur J Pharm Sci. 2006;27:354–62.

    Article  CAS  PubMed  Google Scholar 

  17. Lipoid E 80 product brochure. Lipoid GmbH, Ludwigshafen. 2006.

  18. Guidance for Industry, Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System. August 2000, CDER/FDA. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070246.pdf (accessed 1/12/2010).

  19. Vogelpoel H, Welink J, Amidon GL, Junginger HE, Midha KK, Moller H, et al. Biowaiver monographs for immediate release solid oral dosage forms based on biopharmaceutics classification system (BCS) literature data: verapamil hydrochloride, propranolol hydrochloride, and atenolol. J Pharm Sci. 2004;93:1945–56.

    Article  CAS  PubMed  Google Scholar 

  20. de Miranda P, Blum MR. Pharmacokinetics of acyclovir after intravenous and oral administration. J Antimicrob Chemother. 1983;12(Suppl B):29–37.

    PubMed  Google Scholar 

  21. Chiou WL, Jeong HY, Chung SM, Wu TC. Evaluation of using dog as an animal model to study the fraction of oral dose absorbed of 43 drugs in humans. Pharm Res. 2000;17(2):135–40.

    Article  CAS  PubMed  Google Scholar 

  22. Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2)cells. Biochem Biophys Res Com. 1991;175(3):880–5.

    Article  CAS  PubMed  Google Scholar 

  23. Irvine JD, Takahashi L, Lockhart K, Cheong J, Tolan JW, Selick HE et al. MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. J Pharm Sci. 1999;88(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  24. Zakeri-Milania P, Valizadeha H, Tajerzadehc H, Azarmia Y, Islambolchilara Z, Barzegara S et al. Predicting human intestinal permeability using single-pass intestinal perfusion in rat. J Pharm Pharm Sci. 2007;10:368–79.

    Google Scholar 

  25. Dollery Sir C. Therapeutic drugs. Livingstone: Churchill; 1991.

    Google Scholar 

  26. Ritschel WA, Brady ME, Tan HS. First-pass effect of coumarin in man. Int J Clin Pharmacol Biopharm. 1979;17(3):99–103.

    CAS  PubMed  Google Scholar 

  27. Lima JJ, Haughey DB, Leier CV. Disopyramide pharmacokinetics and bioavailability following the simultaneous administration of disopyramide and 14Cdisopyramide. J Pharm Biopharm. 1984;12(3):289–313.

    Article  CAS  Google Scholar 

  28. Hardman JG, Limbird LE. Goodman and Gilman’s The Pharmacological Basis of Therapeutics. 9th ed. New York: McGraw-Hill; 1996.

    Google Scholar 

  29. Ponto LL, Schoenwald RD. Furosemide (frusemide). A pharmacokinetic/pharmacodynamic review (Part I). Clin Pharmacokin. 1990;18(5):381–408.

    Article  CAS  Google Scholar 

  30. Zhu C, Jiang L, Chen TM, Hwang KK. A comparative study of artificial membrane permeability assay for high-throughput profiling of drug absorption potential. Eur J Med Chem. 2002;37(5):399–407.

    Article  CAS  PubMed  Google Scholar 

  31. Roberfroid MB. Concepts in functional foods: The case of inulin and oligofructose. J Nutrition. 1999;129(7):1398–401.

    Google Scholar 

  32. Li C, Wainhaus S, Uss A, Cheng K. High-throughput screening using Caco-2 Cell and PAMPA systems. In: Ehrhardt C, Kim KJ, editors. In drug absorption studies in situ, in vitro and in silico models. Springer US; 2008. p. 418–429.

  33. Yee S. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man-fact or myth. Pharm Res. 1997;14(6):763–6.

    Article  CAS  PubMed  Google Scholar 

  34. Yazdanian M, Glynn SL, Wright JL, Hawi A. Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm Res. 1998;15(9):1490–4.

    Article  CAS  PubMed  Google Scholar 

  35. Grant SM, Langtry HD, Brogden RN. Ranitidine: An updated review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in peptic ulcer disease and other allied diseases. Drugs. 1989;37(6):801–70.

    Article  CAS  PubMed  Google Scholar 

  36. Hendeles L, Weinberger M, Bigley L. Absolute oral bioavailability of oral theophylline. Am J Hosp Pharm. 1977;34:525–7.

    CAS  PubMed  Google Scholar 

  37. Balimane PV, Han YH, Chong S. Current industrial practices of assessing permeability and P-glycoprotein interaction. AAPS J. 2006;8(1):E1–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Z.S. Teksin was supported by NATO Science Fellowship Program by The Scientific and Technical Research Council of Turkey (TUBITAK) and Gazi University in Ankara, Turkey. This work was support in part by National Institutes of Health grant DK67530.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Polli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teksin, Z.S., Seo, P.R. & Polli, J.E. Comparison of Drug Permeabilities and BCS Classification: Three Lipid-Component PAMPA System Method versus Caco-2 Monolayers. AAPS J 12, 238–241 (2010). https://doi.org/10.1208/s12248-010-9176-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-010-9176-2

Key words

Navigation