Skip to main content

Advertisement

Log in

Characterization of β-lapachone and methylated β-cyclodextrin solid-state systems

  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this research was to explore the utility of β cyclodextrin (βCD) and β cyclodextrin derivatives (hydroxypropyl-β-cyclodextrin [HPβCD], sulfobutylether-β-CD [SB\CD], and a randomly methylated-β-CD [RMβCD]) to form inclusion complexes with the antitumoral drug, β-lapachone (βLAP), in order to overcome the problem of its poor water solubility. RMβCD presented the highest efficiency for βLAP solubilization and was selected to develop solid-state binary systems. Differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD), Fourier transform infrared (FTIR) and optical and scanning electron microscopy results suggest the formation of inclusion complexes by both freeze-drying and kneading techniques with a dramatic improvement in drug dissolution efficiency at 20-minute dissolution efficiency (DE20-minute 67.15% and 88.22%, respectively) against the drug (DE20-minute 27.11%) or the βCD/drug physical mixture (DE20-minute 27.22%). However, the kneading method gives a highly crystalline material that together with the adequate drug dissolution profile make it the best procedure in obtaining inclusion complexes of RMβCD/βLAP convenient for different applications of βLAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Burnett AR, Thomson RH. Naturally occurring quinones. XII. Extractives fromTabebuia chrysantha and other Bignoniaceae.J Chem Soc C. 1968;***;850–853.

    Google Scholar 

  2. Hooker SC, Jr, Shepard HW, Jr, Walsh JG Jr, Connitt GH. Constitution of lapachol and its derivatives.J Am Chem Soc. 1936; 58:1190–1197.

    Article  CAS  Google Scholar 

  3. Guiraud P, Steiman R, Campos-Takaki G, Seigle-Murandi F, Simeon de Buochberg M. Comparison of antibacterial and antifungal activities of lapachol and b-lapachone.Planta Med. 1994;60:373–374.

    Article  CAS  Google Scholar 

  4. Li CJ, Zhang LJ, Dezube BJ, Crumpacker CS, Pardee AB. Three inhibitors of type 1 human immunodeficiency virus long terminal repeat-directed gene expression and virus replication.Proc Natl Acad Sci USA. 1993;90:1839–1842.

    Article  CAS  Google Scholar 

  5. Pereira EM, Machado T de B, Leal IC, et al. Tabebuia avellanedae naphthoquinones: Activity against methicillin-resistant staphylococcal strains, cytotoxic activity and in vivo dermal irritability analysis.Ann Clin Microbiol Antimicrob. 2006;5:5.

    Article  CAS  Google Scholar 

  6. Muller K, Sellmer A, Weigrebe W. Potential antipsoriatic agents: Lapacho compounds as potent inhibitors of HaCaT cell growth.J Nat Prod. 1999;62:1134–1136.

    Article  CAS  Google Scholar 

  7. Tudan C, Jackson JK, Higo TT, Burt HM. The effect of inhibiting topoisomerase I and II on the anti-apoptotic response associated with pro-inflammatory crystals of calcium pyrophosphate dihydrate in human neutrophils.Inflamm Res. 2003;52:8–17.

    Article  CAS  Google Scholar 

  8. Pinto CN, Dantas AP, De Moura KCG, et al. Chemical reactivity studies with naphthoquinones from tabebuia with anti-trypanosoma efficacy.Arzneimittelforschung. 2000;50:1120–1128.

    CAS  Google Scholar 

  9. Planchon SM, Wuerzberger S, Frydman B, et al. Beta-lapachone-mediated apoptosis in human promyelocytic leukemia (HL-60) and human prostate cancer cells: A p53-independent response.Cancer Res. 1995;55:3706–3711.

    CAS  Google Scholar 

  10. Li Y, Sun X, LaMont JT, Pardee AB, Li CJ. Selective killing of cancer cells by b-lapachone: Direct checkpoint activation as a strategy against cancer.Proc Natl Acad Sci USA. 2003;100:2674–2678.

    Article  CAS  Google Scholar 

  11. Ough M, Lewis A, Bey EA, et al. Efficacy of beta-lapachone in pancreatic cancer treatment: exploiting the novel, therapeutic target NQO1.Cancer Biol Ther. 2005;4:95–102.

    Article  CAS  Google Scholar 

  12. Suzuki M, Amano M, Choi J, et al. Synergistic effects of radiation and beta-lapachone in DU-145 human prostate cancer cells in vitro.Radiat Res. 2006;165;525–531.

    Article  CAS  Google Scholar 

  13. Jiang Z, Reddy DG, inventors. Pharmaceutical compositions containing b-lapachone or derivatives or analogs. PCT Designated States: Designated States W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS. JP, KE, KG, KP, KR, KZ, LC, LK, LS, LT, US patent 7074824, February 13, 2003.

  14. Rajewski RA, Stella VJ. Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery.J Pharm Sci. 1996;85:1142–1169.

    Article  Google Scholar 

  15. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization.J Pharm Sci. 1996;85:1017–1025.

    Article  Google Scholar 

  16. Nasongkla N, Wiedmann AF, Bruening A, et al. Enhancement of solubility and bioavailability of beta-lapachone using cyclodextrin inclusion complexes.Pharm Res. 2003;20:1626–1633.

    Article  CAS  Google Scholar 

  17. Wang F, Blanco E, Ai H, Boothman DA, Gao J. Modulating beta-lapachone release from polymer millirods through cyclodextrin complexation.J. Pharm Sci. 2006;95:2309–2319.

    Article  CAS  Google Scholar 

  18. Cao F, Guo J, Ping Q. The physicochemical characteristics of freeze-dried scutellarin-cyclodextrin tetracomponent complexes.Drug Dev Ind Pharm. 2005;31:747–756.

    Article  CAS  Google Scholar 

  19. Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: Past, present and future.Nat Rev Drug Discov. 2004;3:1023–1035.

    Article  CAS  Google Scholar 

  20. Soares da Cunha Filho MS, Alves FC, Alves GMC, Monteiro DB, Morais de Medeiros FP, Rolim Neto PJ. Beta-lapachone: Development and validation of analytical method for the new therapeutic antineoplastic alternative.Rev Farm. 2005;86:39–43.

    CAS  Google Scholar 

  21. Higuchi T, Connors KA. Phase solubility techniques.Adv. Anal Chem. 1965;4:117–212.

    CAS  Google Scholar 

  22. Hedges AR. Industrial applications of cyclodextrins.Chem Rev. 1998;98:2035–2044.

    Article  CAS  Google Scholar 

  23. Balzar D, Audebrand N, Daymond MR, et al. Size-strain line-broadening analysis of the ceria round-robin sample.Appl Cryst. 2004;37:911–924.

    Article  CAS  Google Scholar 

  24. Warren BE, Averbach BL. The effect of cold work in metals on powder pattern intensities.J Appl Phys. 1949;20:1066–1069.

    Article  Google Scholar 

  25. Roisnel T, Rodriguez-Carvajal J. WinPLOTR: A Windows tool for powder diffraction patterns analysis Materials Science. Proceedings of European Powder Diffraction Conference: May 20–23, 2000; Barcelona, Spain. Stafa-Zurich, Switzerland: Trans Tech Publications; 2000:118–123.

    Google Scholar 

  26. Cline JP, Deslattes RD, Staudenmann JL.Certificate SRM 660a. Gaithersburg, MD: NIST; 2000.

    Google Scholar 

  27. Veiga MD, Diaz PJ, Ahsan F. Interactions of griseofulvin with cyclodextrins in solid binary systems.J. Pharm Sci. 1998;87:891–900.

    Article  CAS  Google Scholar 

  28. US Department of Health and Human Services. Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms, August 1997. Available at: http://www.fda.gov/eder/guidance/1713bp1.pdf. Accessed January 23, 2007.

  29. Khan KA, Rhodes CT. Effect of compaction pressure on the dissolution efficiency of some direct compression systemsPharm Acta Helv. 1972;47:594–607.

    CAS  Google Scholar 

  30. Fernández-Palacín F, López Sánchez MA, Muñoz Márquez MA, Rodríguez-Chía M, Sánchez-Navas A, Valero-Franco C:Estadistica Asistida por Ordenador. Statgraphics Plus 4.1. Cádiz: Universidad de Cádiz; 2000.

    Google Scholar 

  31. Mura P, Furlanetto S, Cirri M, Maestrelli F, Corti G, Pinzauti S. Interaction of naproxen with ionic cyclodextrins in aqueous solution and in the solid state.J Pharm Biomed Anal. 2005;37:987–994.

    Article  CAS  Google Scholar 

  32. Jacquet R, Elfakir C, Lafosse M. Characterization of a new methylated beta-cyclodextrin with a low degree of substitution by electrospray ionization mass spectrometry and liquid chromatography/mass spectrometry.Rapid Commun Mass Spectrom. 2005;19:3097–3102.

    Article  CAS  Google Scholar 

  33. Cunha-Filho MS, Landin M, Martinez-Pacheco R, Dacunha-Marinho B. Beta-lapachone.Acta Crystallogr C. 2006;62:0473–0475.

    Article  CAS  Google Scholar 

  34. Frooming K, Szejtli J.Cyclodextrin in Pharmacy London, UK: Kluwer Academic Publishers; 1994.

    Google Scholar 

  35. Cabral Marques HM, Hadgraft J, Kellaway IW. Studies of cyclodextrin inclusion complexes. I. The salbutamol-cyclodextrin complex as studied by phase solubility and DSC.Int J Pharm. 1990;63:259–266.

    Article  CAS  Google Scholar 

  36. Cirri M, Rangoni C, Maestrelli F, Corti G, Mura P. Development of fast-dissolving tablets of flurbiprofen-cyclodextrin complexes.Drug Dev Ind Pharm. 2005;31:697–707.

    Article  CAS  Google Scholar 

  37. Fernandes CM, Teresa Vieira M, Veiga FJB. Physicochemical characterization and in vitro dissolution behavior of nicardipine-cyclodextrins inclusion compounds.Eur J Pharm Sci. 2002; 15:79–88.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Landin.

Additional information

Published: July 27, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunha-Filho, M.S.S., Dacunha-Marinho, B., Torres-Labandeira, J.J. et al. Characterization of β-lapachone and methylated β-cyclodextrin solid-state systems. AAPS PharmSciTech 8, 60 (2007). https://doi.org/10.1208/pt0803060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • DOI: https://doi.org/10.1208/pt0803060

Keywords

Navigation