Skip to main content
Log in

Pellet manufacturing by extrusion-spheronization using process analytical technology

  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the phase transitions occurring in nitrofurantoin and theophylline formulations during pelletization by extrusion-spheronization. An at-line process analytical technology (PAT) approach was used to increase the understanding of the solid-state behavior of the active pharmaceutical ingredients (APIs) during pelletization. Raman spectroscopy, near-infrared (NIR) spectroscopy, and X-ray powder diffraction (XRPD) were used in the characterization of polymorphic changes during the process. Samples were collected at the end of each processing stage (blending, granulation, extrusion, spheronization, and drying). Batches were dried at 3 temperature levels (60°C, 100°C, and 135°C). Water induced a hydrate formation in both model formulations during processing. NIR spectroscopy gave valuable real-time data about the state of water in the system, but it was not able to detect the hydrate formation in the theophylline and nitrofurantoin formulations during the granulation, extrusion, and spheronization stages because of the saturation of the water signal. Raman and XRPD measurement results confirmed the expected pseudopolymorphic changes of the APIs in the wet process stages. The relatively low level of Raman signal with the theophylline formulation complicated the interpretation. The drying temperature had a significant effect on dehydration. For a channel hydrate (theophylline), dehydration occurred at lower drying temperatures. In the case of isolated site hydrate (nitrofurantoin), dehydration was observed at higher temperatures. To reach an understanding of the process and to find the critical process parameters, the use of complementary analytical techniques are absolutely necessary when signals from APIs and different excipients overlap each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zografi G. States of water associated with solids.Drug Dev Ind Pharm. 1988;14:1905–1926.

    Article  CAS  Google Scholar 

  2. Vippagunta SR, Brittain HG, Grant DJW. Crystalline solids.Adv Drug Deliv Rev. 2001;48:3–26.

    Article  CAS  Google Scholar 

  3. Morris KR, Griesser U, Eckhardt CJ, Stowell JG. Theoretical approaches to physical transformations of active pharmaceutical ingredients during manufacturing processes.Adv Drug Deliv Rev. 2001;48:91–114.

    Article  CAS  Google Scholar 

  4. Hasznos L, Langer I, Gyarmathy M. Some factors influencing pellet characteristics made by an extrusion/spheronization process. Part I. Effects on size characteristics and moisture content decrease of pellets.Drug Dev Ind Pharm. 1992;18:409–437.

    Article  CAS  Google Scholar 

  5. Fielden KE, Newton JM, Rowe RC. The influence of moisture content on spheronization of extrudate processed by aram extruder.Int J Pharm. 1993;97:79–92.

    Article  CAS  Google Scholar 

  6. Schmidt C, Lindner H, Kleinebudde P. Comparison between a twin-screw extruder and a rotary ring die press. Part 1. Influence of formulation variables.Eur J Pharm Biopharm. 1997;44:169–176.

    Article  CAS  Google Scholar 

  7. Schmhidt C, Kleinebudde P. Comparison of a twin-screw extruder and a rotary ring die press. Part II: influence of process variables.Eur J Pharm Biopharm. 1998;45:173–179.

    Article  Google Scholar 

  8. Jerwanska E, Alderborn G, Newton JM, Nystrom C. The effect of water content on the porosity and liquid saturation of extruded cylinders.Int J Pharm. 1995;121:65–71.

    Article  CAS  Google Scholar 

  9. Baert L, Remon JP. Influence of amount of granulation liquid on the drug release rate from pellets made by extrusion spheronization.Int J Pharm. 1993;95:135–141.

    Article  CAS  Google Scholar 

  10. Herman J, Remon JP, Visavarungroj N, Schwartz JB, Klinger GH. Formation of theophylline monohydrate during the pelletization of microcrystalline cellulose-anhydrous theophylline blends.Int J Pharm. 1988;42:15–18.

    Article  CAS  Google Scholar 

  11. Herman J, Visavarungroj N, Remon JP. Instability of drug release from anhydrous theophylline-microcrystalline cellulose formulations.Int J Pharm. 1989;55:143–146.

    Article  CAS  Google Scholar 

  12. Ando H, Ishii M, Kayana M, Ozawa H. Effect of moisture in crystallization of theophylline in tablets.Drug Dev Ind Pharm. 1993;18:453–467.

    Article  Google Scholar 

  13. Adeyeye CM, Rowley J, Madu D, Javadi M, Sabnis SS. Evaluation of crystallinity and drug release stability of directly compressed theophylline hydrophilic matrix tablets stored under varied moisture conditions.Int J Pharm. 1995;116:65–75.

    Article  Google Scholar 

  14. Debnath S, Suryanarayanan R. Influence of processing-induced phase transformations on the dissolution of theophylline tablets.AAPS PharmSciTech. 2004;5:E8.

    Article  Google Scholar 

  15. Räsänen E, Rantanen J, Jørgensen A, Karjalainen M, Paakkari T, Yliruusi J. Novel identification of pseudopolymorphic changes of theophylline during wet granulation using near-infrared spectroscopy.J Pharm Sci. 2001;90:389–396.

    Article  Google Scholar 

  16. Airaksinen S, Luukkonen P, Jørgensen A, Karjalainen M, Rantanen J, Yliruusi J. Effects of excipients on hydrate formation in wet masses containing theophylline.J Pharm Sci. 2003;92:516–528.

    Article  CAS  Google Scholar 

  17. Rodriguez-Hornedo N, Lechuga-Ballesteros D, Wu HJ. Phase transition and heterogeneous/epitaxial nucleation of hydrated and anhydrous theophylline crystals.Int J Pharm. 1992;85:149–162.

    Article  CAS  Google Scholar 

  18. Otsuka M, Teraoka R, Matsuda Y. Physicochemical stability of nitrofurantoin anhydrate and monohydrate under various temperature and humidity conditions.Pharm Res. 1991;8:1066–1068.

    Article  CAS  Google Scholar 

  19. Pienaar EW, Caira MR, Lotter AP. Polymorphs of nitrofurantoin. I. Preparation and X-ray crystal structures of two monohydrated forms of nitrofurantoin.J Crystall Spectr Res. 1993;23:739–744.

    Article  CAS  Google Scholar 

  20. Pienaar EW, Caira MR, Lotter AP. Polymorphs of nitrofurantoin. 2. Preparation and X-ray crystal structures of two anhydrous forms of nitrofurantoin.J Crystall Spectr Res. 1993;23:785–790.

    Article  CAS  Google Scholar 

  21. Caira MR, Pienaar EW, Loetter AP. Polymorphism and pseudopolymorphism of the antibacterial nitrofurantoin.Molecular Crystals and Liquid Crystals Science and Technology Section A: Molecular Crystals and Liquid Crystals. 1996;279:241–264.

    Article  CAS  Google Scholar 

  22. Otsuka M, Matsuda Y. The effect of humidity on hydration kinetics of mixtures of nitrofurantoin anhydride and diluents.Chem Pharm Bull. 1994;42:156–159.

    CAS  Google Scholar 

  23. Otsuka M, Teraoka R, Matsuda Y. Physiochemical properties of nitrofurantoin anhydrate and monohydrate and their dissolution.Chem Pharm Bull. 1991:2667–2670.

  24. Aldridge PK, Evans CL, Ward HW II, Colgan ST, Boyer N, Gemperline PJ. Near-IR detection of polymorphism and process-related substances.Anal Chem. 1996;68:997–1002.

    Article  CAS  Google Scholar 

  25. Jorgensen A, Rantanen J, Karjalainen M, Khriachtchev L, Räsänen E, Yliruusi J. Hydrate formation during wet granulation studied by spectroscopic methods and multivariate analysis.Pharm Res. 2002;19:1285–1291.

    Article  CAS  Google Scholar 

  26. FDA/CDER Process Analytical Technology (PAT) Initiative page. US Food and Drug Administration, Center for Drug Evaluation and Research Web site. Available at: http://www.fda.gov/cder/ops/pat.htm. Accessed July 15, 2004.

  27. Yu LX, Lionberger RA, Raw AS, D’Costa R, Wu H, Hussain AS. Applications of process analytical technology to crystallization processes.Adv Drug Deliv Rev. 2004;56:349–369.

    Article  CAS  Google Scholar 

  28. Ciurczak W, Drennen JK. Applications of near-IR spectroscopy in the pharmaceutical industry.Spectroscopy. 1992;7:12–14.

    CAS  Google Scholar 

  29. Blanco M, Gozalez Bano R, Bertran E. Monitoring powder blending in pharmaceutical processes by use of near-infrared spectroscopy.Talanta. 2002;56:203–212.

    Article  CAS  Google Scholar 

  30. Berdntsson O, Daneilsson G-G, Lagerholm B, Folestad S. Quantitative in-line monitoring of powder blending by near-infrared reflection spectroscopy.Powder Technol. 2002;123:185–193.

    Article  Google Scholar 

  31. Curcio JA, Petty CC. The near-infrared absorption spectrum of liquid water.J Optic Soc Am. 1951;41:302–304.

    CAS  Google Scholar 

  32. Buijs K, Choppin GR. Near-infrared studies of the structure of water. I. Pure water.J Chem Phys. 1963;39:2035–2041.

    Article  CAS  Google Scholar 

  33. Frake P, Greenhalgh D, Grierson SM, Hempenstall JM, Rudd DR. Process control and end-point determination of a fluid bed granulation by application of near-infrared spectroscopy.Int J Pharm. 1997;151:75–80.

    Article  CAS  Google Scholar 

  34. Rantanen J, Rasanen E, Tenhunen J, Kansakoski M, Mannermaa J, Yliruusi J. In-line moisture measurement during granulation with a four-wavelength near-infrared sensor: an evaluation of particle size and binder effects.Eur J Pharm Biopharm. 2000;50:271–276.

    Article  CAS  Google Scholar 

  35. Buckton G, Yonemochi E, Hammond J, Moffat A. The use of near-infrared spectroscopy to detect changes in the form of amorphous and crystalline lactose.Int J Pharm. 1998;168:231–241.

    Article  CAS  Google Scholar 

  36. Suzuki T, Nakagami H. Effect of crystallinity of microcrystalline cellulose on the compactability and dissolution of tablets.Eur J Pharm Biopharm. 1999;47:225–230.

    Article  CAS  Google Scholar 

  37. Suihko E, Lehto VP, Ketolainen J, Laine E, Paronen P. Dynamic solid-state and tableting properties of four theophylline forms.Int J Pharm. 2001;217:225–236.

    Article  CAS  Google Scholar 

  38. Phadnis NV, Suryanaryanan R. Polymorphism in anhydrous theophylline—implications on the dissolution rate of theophylline tablets.J Pharm Sci. 1997;86:1256–1263.

    Article  CAS  Google Scholar 

  39. Taylor LS, Langkilde FW. Evaluation of solid-state forms present in tablets by Raman spectroscopy.J Pharm Sci. 2000;89:1342–1353.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niklas Sandler.

Additional information

Published: September 30, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandler, N., Rantanen, J., Heinämäki, J. et al. Pellet manufacturing by extrusion-spheronization using process analytical technology. AAPS PharmSciTech 6, 26 (2005). https://doi.org/10.1208/pt060226

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/pt060226

KeyWords

Navigation