Skip to main content

Advertisement

Log in

Recent Advances in Formulation Strategies for Efficient Delivery of Vitamin D

  • Review Article
  • Theme: Lipid-Based Drug Delivery Strategies for Oral Drug Delivery
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Deficiency of vitamin D is a global concern affecting a huge number of human populations. This deficiency has a serious impact on human health not only affecting bone mineral density but also becoming the reason for cardiovascular disorders, infectious diseases, autoimmune diseases and cancers. Exposure to sunlight is the major source of vitamin D, but due to the present day-to-day lifestyle of working in a shade arouses the need for exogenous sources of vitamin D. Ergocalciferol (vitamin D2) and cholecalciferol (vitamin D3) are the two major forms of vitamin D, which are hydrophobic in nature and highly susceptible to environmental conditions, like temperature and light. Therefore, novel drug delivery systems could be explored for efficient delivery of vitamin D. In this review, a brief account of vitamin D is provided followed by a detailed description of recent advances in various delivery systems, including solid lipid nanoparticles, nanoemulsion, self-emulsifying drug delivery systems, polymeric nanoparticles and solid dispersion, for the efficient delivery of vitamin D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hwalla N, Al-Dhaheri AS, Radwan H, Alfawaz HA, Fouda MA, Al-Daghri NM, et al. The prevalence of micronutrient deficiencies and inadequacies in the Middle East and approaches to interventions. Nutrients. 2017;9(3):228.

    Article  Google Scholar 

  2. Gupta R, Gupta A. Vitamin D deficiency in India: prevalence, causalities and interventions. Nutrients. 2014;6(2):729–75.

    Article  Google Scholar 

  3. Kennel KA, Drake MT, Hurley DL. Vitamin D deficiency in adults: when to test and how to treat. Mayo Clin Proc. 2010;85(8):752–8.

    Article  Google Scholar 

  4. Thacher TD, Clarke BL. Vitamin D insufficiency. Mayo Clin Proc. Elsevier. 2017;86(1):50–60.

    Article  Google Scholar 

  5. Mostafa WZ, Hegazy RA. Vitamin D and the skin: focus on a complex relationship: a review. J Adv Res. 2015;6(6):793–804.

    Article  CAS  Google Scholar 

  6. FAO/WHO. Human vitamins and mineral requirements. In: Report of a joint FAO/WHO expert consultation in Bangkok, Thailand. FAO and Nutrition Division FAO Rome. 2001. http://www.fao.org/3/a-y2809e.pdf. Accessed 10 Dec 2017.

  7. Lavie CJ, Lee JH, Milani RV. Vitamin D and cardiovascular disease. J Am Coll Cardiol. 2011;58(15):1547–56.

    Article  CAS  Google Scholar 

  8. Joergensen C, Gall M-A, Schmedes A, Tarnow L, Parving H-H, Rossing P. Vitamin D levels and mortality in type 2 diabetes. Diabetes Care. 2010;33(10):2238 LP–2243.

    Article  Google Scholar 

  9. Schwalfenberg G. Vitamin D and diabetes: improvement of glycemic control with vitamin D3 repletion. Can Fam Physician. 2008;54(6):864–6.

    PubMed  PubMed Central  Google Scholar 

  10. Tuohimaa P. Vitamin D, aging, and cancer. Nutr Rev. 2008;66(SUPPL.2):147–52.

    Article  Google Scholar 

  11. Garland CF, Gorham ED, Mohr SB, Garland FC. Vitamin D for cancer prevention: global perspective. Ann Epidemiol. 2009;19(7):468–83.

    Article  Google Scholar 

  12. Vitamin D: fact sheet for health professionals. NIH Office of Dietary Supplements, USA. 2018. https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/. Accessed 20 Dec 2017.

  13. Hollick M, Vitamin D. Treatment guidelines. In: Munjal YP, editor. Medicine update. India: The Association of Physicians of India; 2013. p. 619–25.

    Google Scholar 

  14. Ross AC, Taylor CL, Yaktine AL, Valle HBD. Dietary reference intakes for calcium and vitamin D. US: National Academic Press; 2011.

    Google Scholar 

  15. Mcneill AM, Wesner E. Sun protection and vitamin D. Skin Cancer Foundation J. 2016. https://www.skincancer.org/healthy-lifestyle/vitamin-d/damage. Accessed 25 Jan 2018.

  16. Clemens TL, Adams JS, Henderson SL, Holick MF. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet (London, England). 1982;1(8263):74–6.

    Article  CAS  Google Scholar 

  17. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81.

    Article  CAS  Google Scholar 

  18. Patients O, Lagunova Z, Porojnicu AC, Vieth R, F a L, Hexeberg S, et al. Serum 25-hydroxyvitamin D is a predictor of serum 1, 25-dihydroxyvitamin D in overweight and obese patients. J Nutr. 2011;141(1):112–7.

    Article  Google Scholar 

  19. Mazahery H, von Hurst PR. Factors affecting 25-hydroxyvitamin D concentration in response to vitamin D supplementation. Nutrients. 2015;7(7):5111–42.

    Article  CAS  Google Scholar 

  20. Grey A, Lucas J, Horne A, Gamble G, Davidson JS, Reid IR. Vitamin D repletion in patients with primary hyperparathyroidism and coexistent vitamin D insufficiency. J Clin Endocrinol Metab. 2005;90(4):2122–6.

    Article  CAS  Google Scholar 

  21. Adams JS, Hewison M. Hypercalcemia caused by granuloma forming disorders. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Washington DC: American Society for Bone and Mineral Research; 2006. p. 200–2.

    Google Scholar 

  22. Wagner CL, Greer FR. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics. 2008;122(5):1142–52.

    Article  Google Scholar 

  23. MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76(4):1536–8.

    Article  CAS  Google Scholar 

  24. Mithal A, Wahl DA, Bonjour J-P, Burckhardt P, Dawson-Hughes B, Eisman JA, et al. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int. 2009;20(11):1807–20.

    Article  CAS  Google Scholar 

  25. Bruyere O, Slomian J, Beaudart C, Buckinx F, Cavalier E, Gillain S, et al. Prevalence of vitamin D inadequacy in European women aged over 80 years. Arch Gerontol Geriatr. 2014;59(1):78–82.

    Article  CAS  Google Scholar 

  26. O’Keefe JH, Patil HR, Lavie CJ. Can vitamin D deficiency break your heart? Mayo Clin Proc. Elsevier Inc. 2012;87(4):412–3.

    Article  Google Scholar 

  27. O’Mahony L, Stepien M, Gibney MJ, Nugent AP, Brennan L. The potential role of vitamin D enhanced foods in improving vitamin D status. Nutrients. 2011;3(12):1023–41.

    Article  Google Scholar 

  28. Japelt RB, Jakobsen J. Vitamin D in plants: a review of occurrence, analysis, and biosynthesis. Front Plant Sci. 2013;4(136):1–20.

    Google Scholar 

  29. National Center for Biotechnology Information. National library of medicine. USA: PubChem. https://pubchem.ncbi.nlm.nih.gov/. Accessed 11 Oct 2017

  30. DeLuca HF. The vitamin D story: a collaborative effort of basic science and clinical medicine. FASEB J Off Publ Fed Am Soc Exp Biol. 1988;2(3):224–36.

    CAS  Google Scholar 

  31. Holick MF, Chen TC, Lu Z, Sauter E. Vitamin D and skin physiology: a D-lightful story. J Bone Miner Res. 2007;22(SUPPL. 2):V28–33.

    Article  CAS  Google Scholar 

  32. Hollis BW. Comparison of equilibrium and disequilibrium assay conditions for ergocalciferol, cholecalciferol and their major metabolites. J Steroid Biochem. 1984;21(1):81–6.

    Article  CAS  Google Scholar 

  33. Houghton LA, Vieth R. The case against ergocalciferol (vitamin D2) as a vitamin supplement. Am J Clin Nutr. 2006;84(4):694–7.

    Article  CAS  Google Scholar 

  34. Cheng JB, Motola DL, Mangelsdorf DJ, Russell DW. De-orphanization of cytochrome P450 2R1: a microsomal vitamin D 25-hydroxilase. J Biol Chem. 2003;278(39):38084–93.

    Article  CAS  Google Scholar 

  35. Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci. 2004;101(20):7711–5.

    Article  CAS  Google Scholar 

  36. Horst RL, Reinhardt TA, Ramberg CF, Koszewski NJ, Napoli JL. 24-Hydroxylation of 1,25-dihydroxyergocalciferol. An unambiguous deactivation process. J Biol Chem. 1986;261(20):9250–6.

    CAS  PubMed  Google Scholar 

  37. Heaney RP, Recker RR, Grote J, Horst RL, Armas LAG. Vitamin D(3) is more potent than vitamin D(2) in humans. J Clin Endocrinol Metab. 2011;96(3):E447–52.

    Article  CAS  Google Scholar 

  38. Romagnoli E, Mascia ML, Cipriani C, Fassino V, Mazzei F, D’Erasmo E, et al. Short and long-term variations in serum calciotropic hormones after a single very large dose of ergocalciferol (vitamin D2) or cholecalciferol (vitamin D3) in the elderly. J Clin Endocrinol Metab. 2008;93(8):3015–20.

    Article  CAS  Google Scholar 

  39. Armas LAG, Hollis BW, Heaney RP. Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab. 2004;89(11):5387–91.

    Article  CAS  Google Scholar 

  40. Glendenning P, Chew GT, Seymour HM, Gillett MJ, Goldswain PR, Inderjeeth CA, et al. Serum 25-hydroxyvitamin D levels in vitamin D-insufficient hip fracture patients after supplementation with ergocalciferol and cholecalciferol. Bone. 2009;45(5):870–5.

    Article  CAS  Google Scholar 

  41. Leventis P, Kiely PDW. The tolerability and biochemical effects of high-dose bolus vitamin D2 and D3 supplementation in patients with vitamin D insufficiency. Scand J Rheumatol. 2009;38(2):149–53.

    Article  CAS  Google Scholar 

  42. Perry CL, Mcguire MT, Neumark-Sztainer D, Story M. Characteristics of vegetarian adolescents in a multiethnic urban population. J Adolesc Health. 2001;29(6):406–16.

    Article  CAS  Google Scholar 

  43. Key TJ, Appleby PN, Rosell MS. Health effects of vegetarian and vegan diets. Proc Nutr Soc. 2006;65(01):35–41.

    Article  CAS  Google Scholar 

  44. Wacker M, Holick MF. Sunlight and vitamin D: a global perspective for health. Dermatoendocrinol Landes Biosci. 2013;5(1):51–108.

    Article  CAS  Google Scholar 

  45. Zand L, Kumar R. The use of vitamin D metabolites and analogues in the treatment of chronic kidney disease. Endocrinol Metab Clin N Am. Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic. 2017;46(4):983–1007.

    Article  Google Scholar 

  46. Levin A, Bakris GL, Molitch M, Smulders M, Tian J, Williams LA, et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 2007;71(1):31–8.

    Article  CAS  Google Scholar 

  47. DeLuca HF. Chemistry, metabolism, and circulation. In: Feldman D, Pike WJ, Adams J, editors. Vitamin D. San Diego: Academic Press; 2005. p. 3–11.

    Chapter  Google Scholar 

  48. Plum LA, DeLuca HF. The functional metabolism and molecular biology of vitamin D action. Clin Rev Bone Miner Metab. 2009;7(1):20–41.

    Article  CAS  Google Scholar 

  49. Cunningham J, Zehnder D. New vitamin D analogs and changing therapeutic paradigms. Kidney Int. Nature Publishing Group. 2011;79(7):702–7.

    Article  CAS  Google Scholar 

  50. Gallieni M, Kamimura S, Ahmed A, Bravo E, Delmez J, Slatopolsky E, et al. Kinetics of monocyte 1 alpha-hydroxylase in renal failure. Am J Phys. 1995;268(4 Pt 2):F746–53.

    CAS  Google Scholar 

  51. Dusso AS, Negrea L, Gunawardhana S, Lopez-Hilker S, Finch J, Mori T, et al. On the mechanisms for the selective action of vitamin D analogs. Endocrinology. 1991;128(4):1687–92.

    Article  CAS  Google Scholar 

  52. Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008;29(6):726–76.

    Article  CAS  Google Scholar 

  53. Plum LA, DeLuca HF. Vitamin D, disease and therapeutic opportunities. Nat Rev Drug Discov. 2010;9(12):941–55.

    Article  CAS  Google Scholar 

  54. National Center for Biotechnology Information. National library of medicine. USA: PubChem. https://pubchem.ncbi.nlm.nih.gov/. Accessed 09 Jan 2018

  55. Kaur IP, Verma MK. Process for preparing solid lipid sustained release nanoparticles for delivery of vitamins. United States patent, US 9907758B. 2014. 6.

  56. Patel MR, San Martin-Gonzalez MF. Characterization of ergocalciferol loaded solid lipid nanoparticles. J Food Sci. 2012;77(1):8–11.

    Article  Google Scholar 

  57. Park SJ, Garcia CV, Shin GH, Kim JT. Development of nanostructured lipid carriers for the encapsulation and controlled release of vitamin D3. Food Chem. 2017;225:213–9.

    Article  CAS  Google Scholar 

  58. Demirbilek M, Lacin Turkoglu N, Akturk S, Akca C. VitD3-loaded solid lipid nanoparticles: stability, cytotoxicity and cytokine levels. J Microencapsul. 2017;34(5):454–62.

    Article  CAS  Google Scholar 

  59. Kumar M, Sharma G, Singla D, Singh S, Sahwney S, Chauhan AS, et al. Development of a validated UPLC method for simultaneous estimation of both free and entrapped (in solid lipid nanoparticles) all-trans retinoic acid and cholecalciferol (vitamin D3) and its pharmacokinetic applicability in rats. J Pharm Biomed Anal. 2014;91:73–80.

    Article  CAS  Google Scholar 

  60. Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems—an overview. Acta Pharm Sin B. 2013;3(6):361–72.

    Article  Google Scholar 

  61. Maali A, Mosavian MTH. Preparation and application of nanoemulsions in the last decade (2000-2010). J Dispers Sci Technol. 2013;34(1):92–105.

    Article  CAS  Google Scholar 

  62. Guttoff M, Saberi AH, Mcclements DJ. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability. Food Chem. Elsevier Ltd. 2015;171:117–22.

    Article  CAS  Google Scholar 

  63. Mousa AS. Nanoformulation of vitamin D derivatives and/or vitamin D metabolites. United States patent, US8968790B2. 2015. 3.

  64. Fox M, Shakib L. Formulations comprising vitamin D or derivatives thereof. European patent, EP 2201937A1. 2010. 30.

  65. Goncalves A, Gleize B, Roi S, Nowicki M, Dhaussy A, Huertas A, et al. Fatty acids affect micellar properties and modulate vitamin D uptake and basolateral efflux in Caco-2 cells. J Nutr Biochem. 2013;24(10):1751–7.

    Article  CAS  Google Scholar 

  66. Ozturk B, Argin S, Ozilgen M, McClements DJ. Nanoemulsion delivery systems for oil soluble vitamins: influence of carrier oil type on lipid digestion and vitamin D3 bioaccessability. Food Chem. 2015;187(15):499–506.

    Article  CAS  Google Scholar 

  67. Kohli K, Chopra S, Arora S, Khar RK, Pillai KK. Self-emulsifying drug delivery system for a curcuminoid based composition. United States patent, US 8835509B2. 2014. 16.

  68. Boardman D, Karki S, Leyes A, Ostovic D. Process for preparing stabilized vitamin D. United States patent, US 0019933A1. 2006. 26.

  69. Tang WH, Guan MC, Xu Z, Sun J. Pharmacological and pharmacokinetic studies with vitamin D-loaded nanoemulsions in asthma model. Inflammation. 2014;37(3):723–8.

    Article  CAS  Google Scholar 

  70. Omrav A, Bhide YS, Choudhary VS. Pharmaceutical compositions, comprising calcitriol and calcium. WIPO patent, WO 087652A3. 2009. 23.

  71. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16–20.

    Article  CAS  Google Scholar 

  72. Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm. 2008;364(2):298–327.

    Article  CAS  Google Scholar 

  73. Hasanvand E, Fathi M, Bassiri A, Javanmard M, Abbaszadeh R. Novel starch based nanocarrier for Vitamin D fortification of milk: production and characterization. Food Bioprod Process. Institution of Chemical Engineers. 2015;96:264–77.

    Article  CAS  Google Scholar 

  74. Quiñones JP, Gothelf KV, Kjems J, Caballero ÁMH, Schmidt C, Covas CP. Self-assembled nanoparticles of glycol chitosan–ergocalciferol succinate conjugate, for controlled release. Carbohydr Polym. 2012;88(4):1373–7.

    Article  Google Scholar 

  75. Nguyen TLU, Tey SY, Pourgholami MH, Morris DL, Davis TP, Barner-Kowollik C, et al. Synthesis of semi-biodegradable crosslinked microspheres for the delivery of 1,25 dihydroxyvitamin D3 for the treatment of hepatocellular carcinoma. Eur Polym J. 2007;43(5):1754–67.

    Article  CAS  Google Scholar 

  76. Luo Y, Teng Z, Wang Q. Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3. J Agric Food Chem. 2012;60(3):836–43.

    Article  CAS  Google Scholar 

  77. Vora L, VG S, Vavia P. Zero order controlled release delivery of cholecalciferol from injectable biodegradable microsphere: in-vitro characterization and in-vivo pharmacokinetic studies. Eur J Pharm Sci. 2017;107:78–86.

    Article  CAS  Google Scholar 

  78. Huatan H. Vitamin D composition. European patent, EP 2680826B1. 2017. 23.

  79. Bothiraja C, Pawar A, Deshpande G. Ex-vivo absorption study of a nanoparticle based drug delivery system of vitamin D3 (Arachitol Nano™) using everted intestinal sac technique. J Pharm Investig. 2016;46(5):425–32.

    Article  CAS  Google Scholar 

  80. Sun P, Pan K, Wu Y. Dronedarone solid dispersion and preparation method thereof. United States patent, US 8921416B2. 2014. 30.

  81. Mahmoud MFAK, Ebeed MAMK. Homogeneous preparations containing vitamin D. European patent, EP 2468265A3. 2013. 2.

  82. Jin JN, Woo JS, Yi HG. Complex formulation for preventing or treating osteoporosis which comprises solid dispersion of vitamin D or its derivative and bisphosphonate. United States patent, US 0048511A1. 2010. 25.

  83. Valleri M, Tosetti A. Pharmaceutical compositions containing vitamin D and calcium, their preparation and therapeutic use. United States patent, US 7067154B1. 2006. 06.

  84. Makino Y, Suzuki Y. Solid pharmaceutical preparation of active form of vitamin D3 of improved stability. United States patent, US 5158944A. 1992. 27.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem N. Gupta.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest associated with this publication. The institute publication number for this manuscript is IIIM/2240/2018.

Additional information

Guest Editor: Sanyog Jain

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Behera, C., Paudwal, G. et al. Recent Advances in Formulation Strategies for Efficient Delivery of Vitamin D. AAPS PharmSciTech 20, 11 (2019). https://doi.org/10.1208/s12249-018-1231-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-018-1231-9

KEY WORDS

Navigation