Skip to main content

Advertisement

Log in

Organic–Inorganic Composites for Bone Drug Delivery

  • Mini-Review
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This review paper attempts to provide an overview in the fabrication and application of organic–inorganic based composites in the field of local drug delivery for bone. The concept of local drug delivery exists for a few decades. However, local drug delivery in bone and specially application of composites for delivery of drugs to bone is an area for potential research interest in the recent time. The advantages attained by an organic–inorganic composite when compared to its individual components include their ability to release drug, adopting to the natural environment and supporting local area until complete bone regeneration, which make them carriers of interest for local drug delivery for bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BG:

Bioactive glass

BMP:

Bone morphogenetic protein

CS:

Calcium sulfate

DMC:

Dimethyl carbonate

Hap:

Hydroxyapatite

PCL:

Polycaprolactone

PDLLA:

Poly (d,l-lactide)

PHBV:

Polyhydroxybutyrate-co-hydroxyvalerate

PLGA:

Polylactide-co-glycolide

PMMA:

Polymethylmethacrylate

rh:

Recombinant human

SBF:

Simulated body fluid

TCP:

Tricalcium phosphate

TGF:

Transforming growth factor

References

  1. Gardner MJ, Demetrakopoulos D, Shindle MK, Griffith MH, Lane JM. Osteoporosis and skeletal fractures. HSS J. 2006;2(1):62–9.

    Article  PubMed  Google Scholar 

  2. Gururaj G. Injuries in India: national perspective burden of disease in India. In: NCoMaH, editor. Government of India; 2005. pp. 325–47.

  3. Kavarthapu V. (2009) Available from: http://orthosurgeon.org.uk/hip_aurthoplast.html. Accessed 2009 July 25.

  4. Benson MK, Hughes SP. Infection following total hip replacement in a general hospital without special orthopaedic facilities. Acta Orthop Scand. 1975;46:968–78.

    Article  CAS  PubMed  Google Scholar 

  5. Chung R, Bivins BA. Antimicrobial prophylaxis in surgery. A synopsis. Infect Dis Newsl. 1991;10:1–4.

    Article  Google Scholar 

  6. Grogan TJ, Dorey F, Rollins J, Amstutz HC. Ten-year experience at the University of California at Los Angeles Medical Center. J Bone Joint Surg Am. 1986;68:226–34.

    Google Scholar 

  7. Salvati EA, Robinson RP, Zeno SM, Koslin BL, Brause BD, Wilson PDJ. Infection rates after 3175 total hip and total knee replacements performed with and without a horizontal unidirectional filtered air-flow system. J Bone Jt Surg Am. 1982;64:525–35.

    CAS  Google Scholar 

  8. Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements: competitive drug carriers for the musculoskeletal system? Biomaterials. 2006;27(10):2171–7.

    Article  CAS  PubMed  Google Scholar 

  9. Buchholz HW, Elson RA, Engelbrecht E, Lodenkamper H, Rottger J, Siegel A. Management of deep infection of total hip replacement. J Bone Jt Surg Br. 1981;63:342–53.

    Google Scholar 

  10. Passuti N, Gouin F. Antibiotic-loaded bone cement in orthopedic surgery. Jt Bone Spine. 2003;70(3):169–74.

    Article  Google Scholar 

  11. Zalavras CG, Patzakis MJ, Holtom P. Local antibiotic therapy in the treatment of open fractures and osteomyelitis. Clin Orthop Relat Res. 2004;(427):86-93.

  12. Colilla M, Manzano M, Vallet-Regi M. Recent advances in ceramic implants as drug delivery systems for biomedical applications. Int J Nanomed. 2008;3(4):403–14.

    CAS  Google Scholar 

  13. Lee JY, Nam SH, Im SY, Park YJ, Lee YM, Seol YJ, et al. Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J Control Release. 2002;78(1–3):187–97.

    Article  CAS  PubMed  Google Scholar 

  14. Lee JY, Seol YJ, Kim KH, Lee YM, Park YJ, Rhyu IC, et al. Transforming growth factor (TGF)-beta1 releasing tricalcium phosphate/chitosan microgranules as bone substitutes. Pharm Res. 2004;21(10):1790–6.

    Article  CAS  PubMed  Google Scholar 

  15. Kim HW, Knowles JC, Kim HE. Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release. J Mater Sci Mater Med. 2005;16(3):189–95.

    Article  PubMed  CAS  Google Scholar 

  16. Eppley BL, Reilly M. Degradation characteristics of PLLA-PGA bone fixation devices. J Craniofac Surg. 1997;8(2):116–20.

    CAS  PubMed  Google Scholar 

  17. Bostman O, Pihlajamaki H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials. 2000;21(24):2615–21.

    Article  CAS  PubMed  Google Scholar 

  18. Furukawa T, Matsusue Y, Yasunaga T, Nakagawa Y, Okada Y, Shikinami Y, et al. Histomorphometric study on high-strength hydroxyapatite/poly(L-lactide) composite rods for internal fixation of bone fractures. J Biomed Mater Res. 2000;50(3):410–9.

    Article  CAS  PubMed  Google Scholar 

  19. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.

    Article  CAS  PubMed  Google Scholar 

  20. Miyai T, Ito A, Tamazawa G, Matsuno T, Sogo Y, Nakamura C, et al. Antibiotic-loaded poly-ε-caprolactone and porous β-tricalcium phosphate composite for treating osteomyelitis. Biomaterials. 2008;29(3):350–8.

    Article  CAS  PubMed  Google Scholar 

  21. Tuzuner T, Uygur I, Sencan I, Haklar U, Oktas B, Ozdemir D. Elution characteristics and mechanical properties of calcium sulfate-loaded bone cement containing teicoplanin. J Orthop Sci. 2007;12(2):170–7.

    Article  CAS  PubMed  Google Scholar 

  22. Rai B, Teoh SH, Hutmacher DW, Cao T, Ho KH. Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2. Biomaterials. 2005;26(17):3739–48.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang LF, Sun R, Xu L, Du J, Xiong ZC, Chen HC, et al. Hydrophilic poly (ethylene glycol) coating on PDLLA/BCP bone scaffold for drug delivery and cell culture. Mater Sci Eng, C. 2008;28(1):141–9.

    Article  CAS  Google Scholar 

  24. Schnieders J, Gbureck U, Thull R, Kissel T. Controlled release of gentamicin from calcium phosphate-poly(lactic acid-co-glycolic acid) composite bone cement. Biomaterials. 2006;27(23):4239–49.

    Article  CAS  PubMed  Google Scholar 

  25. Ruhe PQ, Boerman OC, Russel FG, Spauwen PH, Mikos AG, Jansen JA. Controlled release of rhBMP-2 loaded poly(dl-lactic-co-glycolic acid)/calcium phosphate cement composites in vivo. J Control Release. 2005;106(1–2):162–71.

    Article  CAS  PubMed  Google Scholar 

  26. Makinen TJ, Veiranto M, Lankinen P, Moritz N, Jalava J, Tormala P, et al. In vitro and in vivo release of ciprofloxacin from osteoconductive bone defect filler. J Antimicrob Chemother. 2005;56(6):1063–8.

    Article  PubMed  CAS  Google Scholar 

  27. Li H, Chang J. Preparation, characterization and in vitro release of gentamicin from PHBV/wollastonite composite microspheres. J Control Release. 2005;107(3):463–73.

    Article  CAS  PubMed  Google Scholar 

  28. Kim HW, Lee EJ, Jun IK, Kim HE, Knowles JC. Degradation and drug release of phosphate glass/polycaprolactone biological composites for hard-tissue regeneration. J Biomed Mater Res B Appl Biomater. 2005;75(1):34–41.

    PubMed  Google Scholar 

  29. Kim HW, Knowles JC, Kim HE. Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials. 2004;25(7–8):1279–87.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Zhang M. Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. J Biomed Mater Res. 2002;62(3):378–86.

    Article  CAS  PubMed  Google Scholar 

  31. Sivakumar M, Panduranga Rao K. Preparation, characterization and in vitro release of gentamicin from coralline hydroxyapatite-gelatin composite microspheres. Biomaterials. 2002;23(15):3175–81.

    Article  CAS  PubMed  Google Scholar 

  32. Arcos D, Ragel CV, Vallet-Regi M. Bioactivity in glass/PMMA composites used as drug delivery system. Biomaterials. 2001;22(7):701–8.

    Article  CAS  PubMed  Google Scholar 

  33. Ragel CV, Vallet-Regi M. In vitro bioactivity and gentamicin release from glass-polymer-antibiotic composites. J Biomed Mater Res. 2000;51(3):424–9.

    Article  CAS  PubMed  Google Scholar 

  34. Amaro Martins VC, Goissis G. Nonstoichiometric hydroxyapatite–anionic collagen composite as support for the double sustained release of gentamicin and norfloxacin/ciprofloxacin. Artif Organs. 2000;24(3):224–30.

    Article  CAS  PubMed  Google Scholar 

  35. Catauro M, Raucci MG, De Marco D, Ambrosio L. Release kinetics of ampicillin, characterization and bioactivity of TiO2/PCL hybrid materials synthesized by sol–gel processing. J Biomed Mater Res. 2006;77A(2):340–50.

    Article  CAS  Google Scholar 

  36. Catauro M, Raucci M, Ausanio G. Sol–gel processing of drug delivery zirconia/polycaprolactone hybrid materials. J Mater Sci Mater Med. 2008;19(2):531–40.

    Article  CAS  PubMed  Google Scholar 

  37. Abe T, Sakane M, Ikoma T, Kobayashi M, Nakamura S, Ochiai N. Intraosseous delivery of paclitaxel-loaded hydroxyapatitealginate composite beads delaying paralysis caused by metastatic spine cancer in rats. J Neurosurg. 2008;9(5):502–10.

    Google Scholar 

  38. Xiao J, Zhu Y, Liu Y, Zeng Y, Xu F. An asymmetric coating composed of gelatin and hydroxyapatite for the delivery of water insoluble drug. J Mater Sci Mater Med. 2009;20(4):889–96.

    Article  CAS  PubMed  Google Scholar 

  39. Lin M, Wang H, Meng S, Zhong W, Li Z, Cai R, et al. Structure and release behavior of PMMA/silica composite drug delivery system. J Pharm Sci. 2007;96(6):1518–26.

    Article  CAS  PubMed  Google Scholar 

  40. Otsuka M, Otsuka K. Bone regeneration by using drug delivery system technology and apatite intelligent materials. J Hard Tissue Biol. 2005;14(2):261–2.

    Article  CAS  Google Scholar 

  41. Gallant JE. Available from: http://prod.hopkins-abxguide.org/diagnosis/bone_joint/osteomyelitis/osteomyelitis__chronic.html?contentInstanceId=255457. Accessed 25 July 2009

  42. McClung MR, Geusens P, Miller PD, Zippel H, Bensen WG, Roux C, et al. Effect of risedronate on the risk of hip fracture in elderly women. Hip intervention program study group. N Engl J Med. 2001;344(5):333–40.

    Article  CAS  PubMed  Google Scholar 

  43. Harbarth S, Pestotnik SL, Lloyd JF, Burke JP, Samore MH. The epidemiology of nephrotoxicity associated with conventional amphotericin B therapy. Am J Med. 2001;111:528–34.

    Article  CAS  PubMed  Google Scholar 

  44. Hsieh CY, Hsieh HJ, Liu HC, Wang DM, Hou LT. Fabrication and release behavior of a novel freeze-gelled chitosan/gamma-PGA scaffold as a carrier for rhBMP-2. Dent Mater. 2006;22(7):622–9.

    Article  CAS  PubMed  Google Scholar 

  45. Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol. 2005;13(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  46. Mathew G, Hanson BP. Global burden of trauma: need for effective fracture therapies. Indian J Orthop. 2009;43:111–6.

    Article  PubMed  Google Scholar 

  47. Schmidmaier G, Schwabe P, Strobel C, Wildemann B. Carrier systems and application of growth factors in orthopaedics. Injury. 2008;39(Suppl 2):S37–43.

    Article  PubMed  Google Scholar 

  48. Woo BH, Fink BF, Page R, Schrier JA, Jo YW, Jiang G, et al. Enhancement of bone growth by sustained delivery of recombinant human bone morphogenetic protein-2 in a polymeric matrix. Pharm Res. 2001;18(12):1747–53.

    Article  CAS  PubMed  Google Scholar 

  49. Koort J, Mäkinen T, Suokas E, Veiranto M, Jalava J, Knuuti J, et al. Efficacy of ciprofloxacin-releasing bioabsorbable osteoconductive bone defect filler for treatment of experimental osteomyelitis due to Staphylococcus aureus. Antimicrob Agents Chemother. 2005;49(4):1502–8.

    Article  CAS  PubMed  Google Scholar 

  50. Padilla S, del Real RP, Vallet-Regi M. In vitro release of gentamicin from OHAp/PEMA/PMMA samples. J Control Release. 2002;83(3):343–52.

    Article  CAS  PubMed  Google Scholar 

  51. Ramila A, del Real RP, Marcos R, Horcajada P, Vallet-Regi M. Drug release and in vitro assays of bioactive polymer/glass mixtures. J Sol Gel Sci Tech. 2003;26:1195–8.

    Article  CAS  Google Scholar 

  52. Xu Q, Czernuszka JT. Controlled release of amoxicillin from hydroxyapatite-coated poly(lactic-co-glycolic acid) microspheres. J Control Release. 2008;127(2):146–53.

    CAS  PubMed  Google Scholar 

  53. Niu X, Feng Q, Wang M, Guo X, Zheng Q. Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2. J Control Release. 2009;134(2):111–7.

    Article  CAS  PubMed  Google Scholar 

  54. Wang Y, Wang X, Wei K, Zhao N, Zhang S, Chen J. Fabrication, characterization and long-term in vitro release of hydrophilic drug using PHBV/HA composite microspheres. Mater Lett. 2007;61(4–5):1071–6.

    Article  CAS  Google Scholar 

  55. Ho ML, Fu YC, Wang GJ, Chen HT, Chang JK, Tsai TH, et al. Controlled release carrier of BSA made by W/O/W emulsion method containing PLGA and hydroxyapatite. J Control Release. 2008;128(2):142–8.

    Article  CAS  PubMed  Google Scholar 

  56. Xue JM, Shi M. PLGA/mesoporous silica hybrid structure for controlled drug release. J Control Release. 2004;98(2):209–17.

    Article  CAS  PubMed  Google Scholar 

  57. Castro C, Sanchez E, Delgado A, Soriano I, Nunez P, Baro M, et al. Ciprofloxacin implants for bone infection. In vitro–in vivo characterization. J Control Release. 2003;93(3):341–54.

    Article  CAS  PubMed  Google Scholar 

  58. Yaylaoglu MB, Korkusuz P, Ors U, Korkusuz F, Hasirci V. Development of a calcium phosphate–gelatin composite as a bone substitute and its use in drug release. Biomaterials. 1999;20(8):711–9.

    Article  CAS  PubMed  Google Scholar 

  59. Kelpke SS, Zinn KR, Rue LW, Thompson JA. Site-specific delivery of acidic fibroblast growth factor stimulates angiogenic and osteogenic responses in vivo. J Biomed Mater Res A. 2004;71(2):316–25.

    Article  CAS  PubMed  Google Scholar 

  60. Vallet-Regi M, Granado S, Arcos D, Gordo M, Cabanas MV, Ragel CV, et al. Preparation, characterization, and in vitro release of ibuprofen from AI2O3/PLA/PMMA composites. J Biomed Mater Res. 1998;39(3):423–8.

    Article  CAS  PubMed  Google Scholar 

  61. Rentería-Zamarrón D, Cortés-Hernández DA, Bretado-Aragón L, Ortega-Lara W. Mechanical properties and apatite-forming ability of PMMA bone cements. Mater Des. 2009;30(8):3318–24.

    Google Scholar 

  62. Serbetci K, Korkusuz F, Hasirci N. Mechanical and thermal properties of hydroxyapatite-impregnated bone cement. Turk J Med Sci. 2000;30(6):543–9.

    CAS  Google Scholar 

  63. Martins VC, Goissis G, Ribeiro AC, Marcantonio E Jr, Bet MR. The controlled release of antibiotic by hydroxyapatite: anionic collagen composites. Artif Organs. 1998;22(3):215–21.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Y, Zhang M. Cell growth and function on calcium phosphate reinforced chitosan scaffolds. J Mater Sci Mater Med. 2004;15(3):255–60.

    Article  CAS  PubMed  Google Scholar 

  65. Gravel M, Gross T, Vago R, Tabrizian M. Responses of mesenchymal stem cell to chitosan–coralline composites microstructured using coralline as gas forming agent. Biomaterials. 2006;27(9):1899–906.

    Article  CAS  PubMed  Google Scholar 

  66. Ho MH, Kuo PY, Hsieh HJ, Hsien TY, Hou LT, Lai JY, et al. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials. 2004;25(1):129–38.

    Article  CAS  PubMed  Google Scholar 

  67. Maquet V, Boccaccini AR, Pravata L, Notingher I, Jerome R. Porous poly(alpha-hydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation. Biomaterials. 2004;25(18):4185–94.

    Article  CAS  PubMed  Google Scholar 

  68. Lee JS, Park JK. Processing of porous ceramic spheres by pseudo-double-emulsion method. Ceram Int. 2003;29(3):271–8.

    Article  CAS  Google Scholar 

  69. Tampieri A, Celotti G, Landi E, Montevecchi M, Roveri N, Bigi A, et al. Porous phosphate–gelatine composite as bone graft with drug delivery function. J Mater Sci Mater Med. 2003;14(7):623–7.

    Article  CAS  PubMed  Google Scholar 

  70. Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials. 2007;28(15):2491–504.

    Article  CAS  PubMed  Google Scholar 

  71. LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008;108(11):4742–53.

    Article  PubMed  CAS  Google Scholar 

  72. Schnettler R, Pfefferle HJ, Kilian O, Heiss C, Kreuter J, Lommel D, et al. Glycerol-l-lactide coating polymer leads to delay in bone ingrowth in hydroxyapatite implants. J Control Release. 2005;106(1–2):154–61.

    Article  CAS  PubMed  Google Scholar 

  73. Biomechanics in Dentistry. Available from: http://www.feppd.org/ICB-Dent/campus/biomechanics_in_dentistry/ldv_data/mech/basic_bone.htm. Accessed 25 July 2009

  74. Ratier A, Gibson I, Best S, Freche M, Lacout J, Rodriguez F. Setting characteristics and mechanical behavior of a calcium phosphate bone cement containing tetracycline. Biomaterials. 2001;22:897–901.

    Article  CAS  PubMed  Google Scholar 

  75. Rai B, Teoh SH, Ho KH. An in vitro evaluation of PCL-TCP composites as delivery systems for platelet-rich plasma. J Control Release. 2005;107(2):330–42.

    Article  CAS  PubMed  Google Scholar 

  76. Knowles JC. Phosphate based glasses for biomedical applications. J Mater Chem. 2003;13:2395–401.

    Article  CAS  Google Scholar 

  77. Franks K, Abrahams I, Knowles JC. Development of soluble glasses for biomedical use. Part I: in vitro solubility measurement. J Mater Sci Mater Med. 2000;11(10):609–14.

    Article  CAS  PubMed  Google Scholar 

  78. Niemelä T. Effect of [beta]-tricalcium phosphate addition on the in vitro degradation of self-reinforced poly-l, d-lactide. Polym Degrad Stab. 2005;89(3):492–500.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Someswar Datta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soundrapandian, C., Sa, B. & Datta, S. Organic–Inorganic Composites for Bone Drug Delivery. AAPS PharmSciTech 10, 1158–1171 (2009). https://doi.org/10.1208/s12249-009-9308-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-009-9308-0

Key words

Navigation