Skip to main content

Advertisement

Log in

Ionic Liquid-Based Transcutaneous Peptide Antitumor Vaccine: Therapeutic Effect in a Mouse Tumor Model

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Traditional vaccinations need to be injected with needles, and since some people have a strong aversion to needles, a needle-free alternative delivery system is important. In this study, we employed ionic liquids (ILs) for transcutaneous delivery of cancer antigen-derived peptides to obtain anticancer therapeutic effects in a needle-free manner. ILs successfully increased the in vitro skin permeability of a peptide from Wilms tumor 1 (WT1), one of the more promising cancer antigens, plus or minus an adjuvant, resiquimod (R848), a toll-like receptor 7 agonist. In vivo studies demonstrated that concomitant transcutaneous delivery of WT1 peptide and R848 by ILs induced WT1-specific cytotoxic T lymphocyte (CTL) in mice, resulting in tumor growth inhibition in Lewis lung carcinoma-bearing mice. Interestingly, administrating R848 in ILs before WT1 peptides in ILs increased tumor growth inhibition effects compared to co-administration of both. We found that the prior application of R848 increased the infiltration of leukocytes in the skin and that subsequent delivery of WT1 peptides was more likely to induce WT1-specific CTL. Furthermore, sequential immunization with IL-based formulations was applicable to different types of peptides and cancer models without induction of skin irritation. IL-based transcutaneous delivery of cancer antigen-derived peptides and adjuvants, either alone or together, could be a novel approach to needle-free cancer therapeutic vaccines.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data are available on reasonable request.

References

  1. Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–96. https://doi.org/10.1146/annurev.iy.09.040191.001415.

    Article  CAS  PubMed  Google Scholar 

  2. Finkelman FD, Lees A, Birnbaum R, Gause WC, Morris SC. Dendritic cells can present antigen in vivo in a tolerogenic or immunogenic fashion. J Immunol. 1996;157(4):1406–14.

    Article  CAS  PubMed  Google Scholar 

  3. Hu Z, Ott PA, Wu CJ. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol. 2018;18(3):168–82. https://doi.org/10.1038/nri.2017.131.

  4. Alcazer V, Bonaventura P, Tonon L, Wittmann S, Caux C, Depil S. Neoepitopes-based vaccines: challenges and perspectives. Eur J Cancer. 2019;108:55–60.. https://doi.org/10.1016/j.ejca.2018.12.011.

  5. Combadiere B, Liard C. Transcutaneous and intradermal vaccination. Hum Vaccin. 2011;7(8):811–27. https://doi.org/10.4161/hv.7.8.16274.

    Article  CAS  PubMed  Google Scholar 

  6. Kupper TS, Fuhlbrigge RC. Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol. 2004;4(3):211–22. https://doi.org/10.1038/nri1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Klechevsky E, Morita R, Liu M, Cao Y, Coquery S, Thompson-Snipes L, et al. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity. 2008;29(3):497–510. https://doi.org/10.1016/j.immuni.2008.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Munch S, Wohlrab J, Neubert RHH. Dermal and transdermal delivery of pharmaceutically relevant macromolecules. Eur J Pharm Biopharm. 2017;119:235–42. https://doi.org/10.1016/j.ejpb.2017.06.019.

    Article  CAS  PubMed  Google Scholar 

  9. Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9(3):165–9. https://doi.org/10.1034/j.1600-0625.2000.009003165.x.

    Article  CAS  PubMed  Google Scholar 

  10. Welton T. Room-temperature ionic liquids. Solvents for Synthesis and Catalysis. Chem Rev. 1999;99(8):2071–84. https://doi.org/10.1021/cr980032t.

  11. Shi R, Wang Y. Dual ionic and organic nature of ionic liquids. Sci Rep. 2016;6:19644. https://doi.org/10.1038/srep19644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mizuuchi H, Jaitely V, Murdan S, Florence AT. Room temperature ionic liquids and their mixtures: potential pharmaceutical solvents. Eur J Pharm Sci. 2008;33(4–5):326–31. https://doi.org/10.1016/j.ejps.2008.01.002.

    Article  CAS  PubMed  Google Scholar 

  13. Florindo C, Araujo JM, Alves F, Matos C, Ferraz R, Prudencio C, et al. Evaluation of solubility and partition properties of ampicillin-based ionic liquids. Int J Pharm. 2013;456(2):553–9. https://doi.org/10.1016/j.ijpharm.2013.08.010.

    Article  CAS  PubMed  Google Scholar 

  14. Williams HD, Sahbaz Y, Ford L, Nguyen TH, Scammells PJ, Porter CJ. Ionic liquids provide unique opportunities for oral drug delivery: structure optimization and in vivo evidence of utility. Chem Commun (Camb). 2014;50(14):1688–90. https://doi.org/10.1039/c3cc48650h.

    Article  CAS  PubMed  Google Scholar 

  15. Sidat Z, Marimuthu T, Kumar P, du Toit LC, Kondiah PPD, Choonara YE, et al. Ionic liquids as potential and synergistic permeation enhancers for transdermal drug delivery. Pharmaceutics. 2019;11(2). https://doi.org/10.3390/pharmaceutics11020096

  16. Monti D, Egiziano E, Burgalassi S, Chetoni P, Chiappe C, Sanzone A, et al. Ionic liquids as potential enhancers for transdermal drug delivery. Int J Pharm. 2017;516(1–2):45–51. https://doi.org/10.1016/j.ijpharm.2016.11.020.

    Article  CAS  PubMed  Google Scholar 

  17. Miwa Y, Hamamoto H, Ishida T. Lidocaine self-sacrificially improves the skin permeation of the acidic and poorly water-soluble drug etodolac via its transformation into an ionic liquid. Eur J Pharm Biopharm. 2016;102:92–100. https://doi.org/10.1016/j.ejpb.2016.03.003.

    Article  CAS  PubMed  Google Scholar 

  18. Banerjee A, Ibsen K, Iwao Y, Zakrewsky M, Mitragotri S. Transdermal protein delivery using choline and geranate (CAGE) deep eutectic solvent. Adv Healthc Mater. 2017;6(15). https://doi.org/10.1002/adhm.201601411.

  19. Oka Y, Tsuboi A, Nakata J, Nishida S, Hosen N, Kumanogoh A, et al. Wilms’ tumor gene 1 (WT1) peptide vaccine therapy for hematological malignancies: from CTL epitope identification to recent progress in clinical studies including a cure-oriented strategy. Oncol Res Treat. 2017;40(11):682–90. https://doi.org/10.1159/000481353.

    Article  CAS  PubMed  Google Scholar 

  20. Chi H, Li C, Zhao FS, Zhang L, Ng TB, Jin G, et al. Anti-tumor activity of toll-like receptor 7 agonists. Front Pharmacol. 2017;8:304. https://doi.org/10.3389/fphar.2017.00304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaneko K, Akamatsu M, Sakai K, Sakai H. Adsorption of hydrophilic amine-based protic ionic liquids on iron-based substrates. J Oleo Sci. 2021;70(3):333–9. https://doi.org/10.5650/jos.ess20279.

    Article  CAS  PubMed  Google Scholar 

  22. Bashir SJ, Chew AL, Anigbogu A, Dreher F, Maibach HI. Physical and physiological effects of stratum corneum tape stripping. Skin Res Technol. 2001;7(1):40–8. https://doi.org/10.1034/j.1600-0846.2001.007001040.x.

    Article  CAS  PubMed  Google Scholar 

  23. Shimizu T, Abu Lila AS, Kawaguchi Y, Shimazaki Y, Watanabe Y, Mima Y, et al. A novel platform for cancer vaccines: antigen-selective delivery to splenic marginal zone B cells via repeated injections of PEGylated liposomes. J Immunol. 2018;201(10):2969–76. https://doi.org/10.4049/jimmunol.1701351.

    Article  CAS  PubMed  Google Scholar 

  24. Vitoriano-Souza J, Moreira N, Teixeira-Carvalho A, Carneiro CM, Siqueira FA, Vieira PM, et al. Cell recruitment and cytokines in skin mice sensitized with the vaccine adjuvants: saponin, incomplete Freund’s adjuvant, and monophosphoryl lipid A. PLoS One. 2012;7(7):e40745. https://doi.org/10.1371/journal.pone.0040745.

  25. Porgador A, Yewdell JW, Deng Y, Bennink JR, Germain RN. Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity. 1997;6(6):715–26. https://doi.org/10.1016/s1074-7613(00)80447-1.

    Article  CAS  PubMed  Google Scholar 

  26. Chaulagain B, Jain A, Tiwari A, Verma A, Jain SK. Passive delivery of protein drugs through transdermal route. Artif Cells Nanomed Biotechnol. 2018;46(sup1):472–87. https://doi.org/10.1080/21691401.2018.1430695.

    Article  CAS  PubMed  Google Scholar 

  27. Nakatsuka S, Oji Y, Horiuchi T, Kanda T, Kitagawa M, Takeuchi T, et al. Immunohistochemical detection of WT1 protein in a variety of cancer cells. Mod Pathol. 2006;19(6):804–14. https://doi.org/10.1038/modpathol.3800588.

    Article  CAS  PubMed  Google Scholar 

  28. Oka Y, Tsuboi A, Oji Y, Kawase I, Sugiyama H. WT1 peptide vaccine for the treatment of cancer. Curr Opin Immunol. 2008;20(2):211–20. https://doi.org/10.1016/j.coi.2008.04.009.

    Article  CAS  PubMed  Google Scholar 

  29. Ohno S, Okuyama R, Aruga A, Sugiyama H, Yamamoto M. Phase I trial of Wilms’ tumor 1 (WT1) peptide vaccine with GM-CSF or CpG in patients with solid malignancy. Anticancer Res. 2012;32(6):2263–9.

    CAS  PubMed  Google Scholar 

  30. van Doorn E, Liu H, Huckriede A, Hak E. Safety and tolerability evaluation of the use of Montanide ISA51 as vaccine adjuvant: a systematic review. Hum Vaccin Immunother. 2016;12(1):159–69. https://doi.org/10.1080/21645515.2015.1071455.

    Article  PubMed  Google Scholar 

  31. Kuball J, de Boer K, Wagner E, Wattad M, Antunes E, Weeratna RD, et al. Pitfalls of vaccinations with WT1-, proteinase3- and MUC1-derived peptides in combination with MontanideISA51 and CpG7909. Cancer Immunol Immunother. 2011;60(2):161–71. https://doi.org/10.1007/s00262-010-0929-7.

    Article  CAS  PubMed  Google Scholar 

  32. Kaplan DH. Ontogeny and function of murine epidermal Langerhans cells. Nat Immunol. 2017;18(10):1068–75. https://doi.org/10.1038/ni.3815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Herrero-Fernandez M, Montero-Vilchez T, Diaz-Calvillo P, Romera-Vilchez M, Buendia-Eisman A, Arias-Santiago S. Impact of water exposure and temperature changes on skin barrier function. J Clin Med. 2022;11(2). https://doi.org/10.3390/jcm11020298.

  34. Wong E, Montoya B, Stotesbury C, Ferez M, Xu RH, Sigal LJ. Langerhans cells orchestrate the protective antiviral innate immune response in the lymph node. Cell Rep. 2019;29(10):3047–59 e3. https://doi.org/10.1016/j.celrep.2019.10.118.

  35. Lopes PP, Todorov G, Pham TT, Nesburn AB, Bahraoui E, BenMohamed L. Laser adjuvant-assisted peptide vaccine promotes skin mobilization of dendritic cells and enhances protective CD8(+) TEM and TRM cell responses against herpesvirus infection and disease. J Virol. 2018;92(8). https://doi.org/10.1128/JVI.02156-17.

  36. Dominguez PM, Ardavin C. Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunol Rev. 2010;234(1):90–104. https://doi.org/10.1111/j.0105-2896.2009.00876.x.IMR876[pii].

    Article  CAS  PubMed  Google Scholar 

  37. Elnekave M, Furmanov K, Shaul Y, Capucha T, Eli-Berchoer L, Zelentsova K, et al. Second-generation Langerhans cells originating from epidermal precursors are essential for CD8+ T cell priming. J Immunol. 2014;192(4):1395–403. https://doi.org/10.4049/jimmunol.1301143.

    Article  CAS  PubMed  Google Scholar 

  38. Pham QD, Bjorklund S, Engblom J, Topgaard D, Sparr E. Chemical penetration enhancers in stratum corneum - relation between molecular effects and barrier function. J Control Release. 2016;232:175–87. https://doi.org/10.1016/j.jconrel.2016.04.030.

    Article  CAS  PubMed  Google Scholar 

  39. Kong Q, Kitaoka M, Wakabayashi R, Kamiya N, Goto M. Transcutaneous immunotherapy of pollinosis using solid-in-oil nanodispersions loaded with T cell epitope peptides. Int J Pharm. 2017;529(1–2):401–9. https://doi.org/10.1016/j.ijpharm.2017.07.020.

    Article  CAS  PubMed  Google Scholar 

  40. Vandermeulen G, Daugimont L, Richiardi H, Vanderhaeghen ML, Lecouturier N, Ucakar B, et al. Effect of tape stripping and adjuvants on immune response after intradermal DNA electroporation. Pharm Res. 2009;26(7):1745–51. https://doi.org/10.1007/s11095-009-9885-3.

    Article  CAS  PubMed  Google Scholar 

  41. Belyakov IM, Hammond SA, Ahlers JD, Glenn GM, Berzofsky JA. Transcutaneous immunization induces mucosal CTLs and protective immunity by migration of primed skin dendritic cells. J Clin Invest. 2004;113(7):998–1007. https://doi.org/10.1172/JCI20261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ali Khan A, Munir M, Miraj F, Imran S, Arif Siddiqi D, Altaf A, et al. Examining unsafe injection practices associated with auto-disable (AD) syringes: a systematic review. Hum Vaccin Immunother. 2021;17(9):3247–58. https://doi.org/10.1080/21645515.2021.1911514.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lin SY, Hou SJ, Hsu TH, Yeh FL. Comparisons of different animal skins with human skin in drug percutaneous penetration studies. Methods Find Exp Clin Pharmacol. 1992;14(8):645–54.

    CAS  PubMed  Google Scholar 

  44. Maeng H, Terabe M, Berzofsky JA. Cancer vaccines: translation from mice to human clinical trials. Curr Opin Immunol. 2018;51:111–22. https://doi.org/10.1016/j.coi.2018.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Professor Emerita Theresa M. Allen for helpful editorial comments.

Funding

This study was in part supported by JSPS, a Grant-in-Aid for Exploratory Research (18K19925), AMED under Grant Number JP21ak0101175, and by a research program for the development of an intelligent Tokushima artificial exosome (iTEX) from Tokushima University.

Author information

Authors and Affiliations

Authors

Contributions

T.S.: conceptualization, data curation, formal analysis, methodology, project administration, visualization, and roles/writing—original draft; T.M.: data curation, formal analysis, investigation, methodology, and validation; S.F.: data curation, formal analysis, investigation, methodology, and validation; C.Y.: data curation, formal analysis, investigation, methodology, and validation; Y.S.: data curation, formal analysis, investigation, methodology, and validation; S.T.: data curation, formal analysis, investigation, methodology, and validation; K.Y.: data curation, formal analysis, investigation, methodology, and validation; T.N.: data curation, formal analysis, investigation, methodology, and validation; M.I.: data curation, formal analysis, investigation, methodology, and validation; H.H.: conceptualization, project administration, resources, and writing—review and editing; H.A.: writing—review and editing; Y.I.: writing—review and editing; T.I.: conceptualization, funding acquisition, writing—review and editing, and supervision.

Corresponding authors

Correspondence to Taro Shimizu or Tatsuhiro Ishida.

Ethics declarations

Conflict of Interest

K.Y., T.N., M.I., and H.H. are employees of MEDRx Co., Ltd. The authors report no other conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 24 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimizu, T., Matsuzaki, T., Fukuda, S. et al. Ionic Liquid-Based Transcutaneous Peptide Antitumor Vaccine: Therapeutic Effect in a Mouse Tumor Model. AAPS J 25, 27 (2023). https://doi.org/10.1208/s12248-023-00790-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-023-00790-w

Keywords

Navigation