Skip to main content

Advertisement

Log in

Enhanced transdermal delivery of salbutamol sulfate via ethosomes

  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The main objective of the present work was to compare the transdermal delivery of salbutamol sulfate (SS), a hydrophilic drug used as a bronchodilator, from ethosomes and classic liposomes containing different cholesterol and dicetylphosphate concentrations. All the systems were characterized for shape, particle size, and entrapment efficiency percentage, by image analysis optical microscopy or transmission electron microscopy, laser diffraction, and ultracentrifugation, respectively. In vitro drug permeation via a synthetic semipermeable membrane or skin from newborn mice was studied in Franz diffusion cells. The selected systems were incorporated into Pluronic F 127 gels and evaluated for both drug permeation and mice skin deposition. In all systems, the presence of spherical-shaped vesicles was predominant. The vesicle size was significantly decreased (P<.05) by decreasing cholesterol concentration and increasing dicetylphosphate and ethanol concentrations. The entrapment efficiency percentage was significantly increased (P<.05) by increasing cholesterol, dicetylphosphate, and ethanol concentrations. In vitro permeation studies of the prepared gels containing the selected vesicles showed that ethosomal systems were much more efficient at delivering SS into mice skin (in terms of quantity and depth) than were liposomes or aqueous or hydroalcoholic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties.J Control Release. 2000;65:403–418.

    Article  PubMed  CAS  Google Scholar 

  2. Kirjavainen M, Urtti A, Jaaskelainen I, et al. Interaction of liposomes with human skin in vitro—the influence of lipid composition and structure.Biochim Biophys Acta. 1996;1304:179–189.

    PubMed  CAS  Google Scholar 

  3. El Sayed MA, Abdallah OY, Naggar VF, Khalafallah NM. Deformable liposomes and ethosomes: mechanism of enhanced skin delivery.Int J Pharm. 2006;322:60–66.

    Article  CAS  Google Scholar 

  4. Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force.Biochim Biophys Acta. 1992;1104:226–232.

    Article  PubMed  CAS  Google Scholar 

  5. Honeywell-Nguyen PL, Bouwstra JA. Vesicles as a tool for transdermal and dermal delivery.Drug Discov Today. 2005;2:67–74.

    Article  CAS  Google Scholar 

  6. Benson HA. Transfersomes for transdermal drug delivery.Expert Opin Drug Deliv. 2006;3:727–737.

    Article  PubMed  CAS  Google Scholar 

  7. Oh YK, Kim MY, Shin JY, et al. Skin permeation of retinol in Tween 20-based deformable liposomes: in-vitro evaluation in human skin and keratinocyte models.J Pharm Pharmacol. 2006;58:161–166.

    Article  PubMed  CAS  Google Scholar 

  8. Trotta M, Peira E, Carlotti ME, Gallarate M. Deformable liposomes for dermal administration of methotrexate.Int J Pharm. 2004;270:119–125.

    Article  PubMed  CAS  Google Scholar 

  9. Cevc G, Blume G. Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage.Biochim Biophys Acta. 2004;1663:61–73.

    Article  PubMed  CAS  Google Scholar 

  10. Ainbinder D, Touitou E. Testosterone ethosomes for enhanced transdermal delivery.Drug Deliv. 2005;12:297–303.

    Article  PubMed  CAS  Google Scholar 

  11. Paolino D, Lucania G, Mardente D, Alhaique F, Fresta M. Ethosomes for skin delivery of ammonium glycyrrhizinate: in vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers.J Control Release. 2005;106:99–110.

    Article  PubMed  CAS  Google Scholar 

  12. Magnusson BM, Runn P, Karlsson K, Koskinen L. Terpenes and ethanol enhance the transdermal permeation of the tripeptide thyrotropin releasing hormone in human epidermis.Int J Pharm. 1997;157:113–121.

    Article  CAS  Google Scholar 

  13. Lopez-Pinto JM, Gonzalez-Rodriguez ML, Rabasco AM. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes.Int J Pharm. 2005;298:1–12.

    Article  PubMed  CAS  Google Scholar 

  14. Godin B, Touitou E. Erythromycin ethosomal systems: physicochemical characterization and enhanced antibacterial activity.Curr Drug Deliv. 2005;2:269–275.

    Article  PubMed  CAS  Google Scholar 

  15. Godin B, Touitou E. Mechanism of bacitracin permeation enhancement through the skin and cellular membranes from an ethosomal carrier.J Control Release. 2004;94:365–379.

    Article  PubMed  CAS  Google Scholar 

  16. Kelly HW, Murphy S. Beta-adrenergic agonists for acute, severe asthma.Ann Pharmacother. 1992;26:81–91.

    PubMed  CAS  Google Scholar 

  17. Hochhaus G, Mollmann H. Pharmacokinetic/pharmacodynamic characteristics of the beta-2-agonists terbutaline, salbutamol and fenoterol.Int J Clin Pharmacol Ther Toxicol. 1992;30:342–362.

    PubMed  CAS  Google Scholar 

  18. Sweetman SC.Martindale: The Complete Drug Reference. London, UK: Pharmaceutical Press; 2005.

    Google Scholar 

  19. Holimon TD, Chafin CC, Self TH. Nocturnal asthma uncontrolled by inhaled corticosteroids: theophylline or long-acting beta2 agonists?Drugs. 2001;61:391–418.

    Article  PubMed  CAS  Google Scholar 

  20. Murthy SN, Hiremath SR. Clinical pharmacokinetic and pharmacodynamic evaluation of transdermal drug delivery systems of salbutamol sulfate.Int J Pharm. 2004;287:47–53.

    Article  CAS  Google Scholar 

  21. Liang W, Levchenko TS, Torchilin VP. Encapsulation of ATP into liposomes by different methods: optimization of the procedure.J Microencapsul. 2004;21:251–261.

    Article  PubMed  CAS  Google Scholar 

  22. Sentjurc M, Vrhovnik K, Kristl J. Liposomes as a topical delivery system: the role of size on transport studied by the EPR imaging method.J Control Rel. 1999;59:87–97.

    Article  CAS  Google Scholar 

  23. Kanikkannan N, Singh J, Ramarao P. In vitro transdermal iontophoretic transport of timolol maleate: effect of age and species.J Control Rel. 2001;71:99–105.

    Article  CAS  Google Scholar 

  24. Guide for the Care and Use of Laboratory Animals #86-23. Bethesda, MD: National Institutes of Health; 1985.

  25. Das MK, Bhattacharya A, Ghosal SK. Effect of different terpene-containing essential oils on percutaneous absorption of trazodone hydrochloride through mouse epidermis.Drug Deliv. 2006;13:425–431.

    Article  PubMed  CAS  Google Scholar 

  26. El Maghraby GM, Williams AC, Barry BW. Skin delivery of estradiol from deformable and traditional liposomes: mechanistic studies.J Pharm Pharmacol. 1999;51:1123–1134.

    Article  PubMed  Google Scholar 

  27. Warner RR, Myers MC, Taylor DA. Electron probe analysis of human skin: determination of the water concentration profile.J Invest Dermatol. 1988;90:218–224.

    Article  PubMed  CAS  Google Scholar 

  28. Lasic D, Weiner N, Riaz M, Martin F. Liposomes. In: Lieberman A, Rieger M, Banker G, eds.Pharmaceutical Dosage Forms: Disperse Systems. vol 3. New York, NY: Marcel Dekker; 1998:43–86.

    Google Scholar 

  29. Barry AL, Cullis PR. Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid bilayers.Biochemistry. 1994;33:8082–8088.

    Article  PubMed  CAS  Google Scholar 

  30. Maurer N, Wong KF, Stark H, et al. Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes.Biophys J. 2001;80:2310–2326.

    Article  PubMed  CAS  Google Scholar 

  31. Kulkarni SB, Singh M, Betageri GV. Encapsulation, stability and in vitro release characteristics of liposomal formulations of colchicine.J Pharm Pharmacol. 1997;49:491–495.

    PubMed  CAS  Google Scholar 

  32. El-Samaligy MS, Afifi NN, Mahmoud EA, Afify NN, Mahmoud EA. Increasing bioavailability of silymarin using a buccal liposomal delivery system: preparation and experimental design investigation.Int J Pharm. 2006;308:140–148.

    Article  PubMed  CAS  Google Scholar 

  33. El Sayed MA, Abdallah OY, Naggar VF, Khalafallah NM. Lipid vesicles for skin delivery of drugs: reviewing three decades of research.Int J Pharm. 2007;332:1–16.

    Article  CAS  Google Scholar 

  34. Honeywell-Nguyen PL, Bouwstra JA. The in vitro transport of pergolide from surfactant-based elastic vesicles through human skin: a suggested mechanism of action.J Control Release. 2003;86:145–156.

    Article  PubMed  CAS  Google Scholar 

  35. Cevc G. Lipid vesicles and other colloids as drug carriers on the skin.Adv Drug Deliv Rev. 2004;56:675–711.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina I. Tadros.

Additional information

Published: December 14, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bendas, E.R., Tadros, M.I. Enhanced transdermal delivery of salbutamol sulfate via ethosomes. AAPS PharmSciTech 8, 107 (2007). https://doi.org/10.1208/pt0804107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • DOI: https://doi.org/10.1208/pt0804107

Keywords

Navigation