Skip to main content
Log in

Lipid-based supramolecular systems for topical application: A preformulatory study

  • Published:
AAPS PharmSci Aims and scope Submit manuscript

Abstract

This article describes the production and characterization of monoglyceride-based supramolecular systems by a simple processing technique, avoiding time-consuming procedures, high energy input, and the use of organic solvents. A preformulatory study was performed to study the influence of the experimental parameters on the production of monoglyceride-based disperse systems. In particular the effects of (1) stirring speed, (2) type and concentration of monoglyceride mixture, and (3) type and concentration of surfactant were investigated on the recovery, fraction of larger particles, mean diameter, and shape of smaller particles (so called nanosomes). Dispersions were first characterized by optical microscopy and freeze-fracture electron microscopy. The mean diameter of standard nanosomes, analyzed by photon correlation spectroscopy (PCS) after elimination of larger particles by filtration, was 193.5 nm. Cryotransmission electron microscopy studies, conducted in order to investigate the structure of dispersions, showed the coexistence of vesicles and particles characterized by a cubic organization. X-ray diffraction data revealed the coexistence of 2 different cubic phases, the first being a bicontinuous cubic phase of spatial symmetry Im3m (Q229) and the second belonging to the Pn3m spatial symmetry. A study on the stability of monoglyceride-based dispersions based on macroscopical analysis of organoleptic properties and dimensional analysis by time was performed after elimination of larger particles by filtration. Organoleptic and morphological features do not change by time, appearing free from phase-separation phenomena for almost 1 year from production. PCS studies showed that nanosomes undergo an initial increase in mean diameter within the first month following production; afterwards they generally maintain their dimensions for the next 4 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thormar H, Isaacs CE, Brown HR, Barshatzy MR, Pessolano T. Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob Agents Chemother. 1987;31:27–31.

    Article  CAS  Google Scholar 

  2. Thormar H, Isaacs CE, Kim KS, Brown HR. Inactivation of visna virus and other enveloped viruses by free fatty acids and monoglycerides. Ann N Y Acad Sci. 1994;724:465–471.

    Article  CAS  Google Scholar 

  3. Isaacs CE, Litov RE, Thormar H. Antimicrobial activity of lipids added to human milk, infant formula and bovine milk. Nutr Biochem. 1995;6:362–366.

    Article  CAS  Google Scholar 

  4. Kristmundsdottir T, Amadottir SG, Bergsson G, Thormar H. Development and evaluation of microbicidal hydrogels containing monoglyceride as the active ingredient. J Pharm Sci. 1999;88:1011–1015.

    Article  CAS  Google Scholar 

  5. Isaacs CE, Kim KS, Thormar H. Inactivation of enveloped viruses in human bodily fluids by purified lipids. Ann N Y Acad Sci. 1994;724:457–464.

    Article  CAS  Google Scholar 

  6. D'Antona P, Parker WO Jr, Zanirato MC, Esposito E, Nastruzzi C. Rheologic and NMR characterization of monoglyceride-based formulation. J Biomed Mat Res. 2000;52:40–52.

    Article  CAS  Google Scholar 

  7. Hyde ST, Andersson S, Ericsson B, Larsson K. A cubic structure consisting of a lipid bilayer forming an infinite periodic minimal surface of the gyroid type in the glycerol monooleate water system. Z Kristallogr. 1984;168:213–219.

    Article  CAS  Google Scholar 

  8. Chung H, Caffrey M. The neutral area surface of the cubic mesophases: location and properties. Biophys J. 1994;66:377–381.

    Article  CAS  Google Scholar 

  9. Engstroem S, Lindahl L, Wallin R, Engblom J. A study of polar lipid drug carrier systems undergoing a thermoreversible lamellar-to-cubic phase transition. Int J Pharm. 1992;86:137–145.

    Article  CAS  Google Scholar 

  10. Engstroem S, Norden TP, Nyquist H. Cubic phases for studies of drug partition into lipid bilayers. Eur J Pharm. 1999;8:243–254.

    Article  Google Scholar 

  11. Shah JC, Sadhale Y, Chilukuri DM. Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev. 2001;47:229–250.

    Article  CAS  Google Scholar 

  12. Larsson K. Aqueous dispersion of cubic lipid-water phases. Curr Opin Colloid In. 2000;5:64–69.

    Article  CAS  Google Scholar 

  13. Engstrom S, Ericsson B, Landh T. A cubosome formulation for intravenous administration of somatostatin. Proc Int Symp Control Rel Bioact Mater. 1996;23:382–383.

    Google Scholar 

  14. Kim JS, Kim HK, Chung H, Sohn YT, Kwon IC, Jeong SY. Drug formulations that form a dispersed cubic phase when mixed with water. Proc Int Symp Control Rel Bioact Mater. 2000;27:1118–1119.

    Google Scholar 

  15. Chung H, Kim J, Um JY, Kwon, IC, Jeong SY. Self-assembled “nanocubicle” as a carrier for peroral insulin delivery. Diabetologia. 2002;45(3):448–451.

    Article  CAS  Google Scholar 

  16. Landh T, Larsson K, inventors; GS Development AB, SE, assignee. Particles, method of preparing said particles and uses thereof. Canadian Patent WO93/06921. April 15, 1993.

  17. Gustafsson J, Ljusberg-Wharen H, Almgrem M, Larsson K. Submicronparticles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir. 1997;13:6964–6971.

    Article  CAS  Google Scholar 

  18. Siekmann B, Bunjes H, Koch MHJ, Westesen K. Preparation and structural investigations of colloidal dispersions prepared from cubic monoglyceride-water phases. Int J Pharm. 2002;244:33–43.

    Article  CAS  Google Scholar 

  19. Spicer PT, Hayden KL. Novel process for producing cubic liquid cristalline nanoparticles (cubosomes). Langmuir. 2001;17:5748–5756.

    Article  CAS  Google Scholar 

  20. Nakano M, Sugita A, Matsuoka H, Handa T. Small angle x-ray scattering and 13C NMR investigation on the internal structure of “cubosomes”. Langmuir. 2001;17:3917–3922.

    Article  CAS  Google Scholar 

  21. Arshady R. Albumin microspheres and microcapsules: methodology of manufacturing techniques. J Control Release. 1990;14:111–131.

    Article  CAS  Google Scholar 

  22. Almgrem M, Edwards K, Karlsson G. Cryo transmission electron microscopy of liposomes and related structures. Colloid Surface A. 2000;174:3–21.

    Article  Google Scholar 

  23. Gustafsson J, Ljusberg-Wharen H, Almgrem M, Larsson K. Cubic lipid-water phase dispersed into submicron particles. Langmuir. 1996;12:4611–4613.

    Article  CAS  Google Scholar 

  24. Lee SC, Oh JT, Jang MH, Chung SI. Quantitative analysis of polyvinylalcohol on the surface of poly(D,L-lactide-co-glycolide) microparticles prepared by solvent evaporation method: effect of particle size and PVA concentration. J Control Release. 1999; 59:123–132.

    Article  CAS  Google Scholar 

  25. Baras B, Benoit MA, Gillard J. Parameters influencing the antigen release from spray-dried poly(DL-lactide) microparticles. Int J Pharm. 2000;200(1):133–145.

    Article  CAS  Google Scholar 

  26. Lemoine D, Preat V. Polymeric nanoparticles as delivery system for influenza virus glycoproteins. J Control Release. 1998;54:15–27.

    Article  CAS  Google Scholar 

  27. Cavalier M, Benoit JP, Thies C. The formation and characterization of hydrocortisone-loaded poly(+/−)-lactide) microspheres. J Pharm Pharmacol. 1986;38(4):249–253.

    Article  CAS  Google Scholar 

  28. Caboi F, Amico GS, Pitzalis P, Monduzzi M, Nylander T, Larsson K. Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein/water system. I. Phase behavior. Chem Phys Lipids. 2001;109(1):47–62.

    Article  CAS  Google Scholar 

  29. Wörle G, Westesen K, Koch MHJ. Investigation of the phase behavior of monoolein/surfactant dispersions of different composition and preparation methods. In: EMBL Hamburg Outstation Annual Report. Heidelberg, Germany: European Molecular biology Laboratory; 2000.

    Google Scholar 

  30. Mariani P, Luzzati V, Delacroix H. Cubic phases of lipid-containing systems. Structure analysis and biological implications. J Mol Biol. 1988;204:165–189.

    Article  CAS  Google Scholar 

  31. Luzzati V, Vargas R, Mariani P, Gulik A, Delacroix H. Cubic phases of lipid-containing systems. Elements of a theory and biological connotations. J Mol Biol. 1993;229(2):540–551.

    Article  CAS  Google Scholar 

  32. Johnsson M, Edwards K. Phase behavior and aggregate structure in mixtures of dioleoylphosphatidylethanolamine and poly(ethylene glycol)-lipids. Biophys J. 2001;80:313–323.

    Article  CAS  Google Scholar 

  33. Templer RH, Seddon JM, Warrender NA, et al. Inverse Bicontinuous cubic phases in 2∶1 fatty acid/phosphatidylcholine mixtures. The effects of chain length, hydration, and temperature. J Phys Chem. 1998;102:7251–7261.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Esposito.

Additional information

Published: November 18, 2003

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esposito, E., Eblovi, N., Rasi, S. et al. Lipid-based supramolecular systems for topical application: A preformulatory study. AAPS PharmSci 5, 30 (2003). https://doi.org/10.1208/ps050430

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/ps050430

Keywords

Navigation