闫德, 汪建晓, 罗陆锋, 刘文涛, 韦慧玲, 王金海, 刘宝立, 卢清华. 断梗激励下葡萄果粒的振动脱落特性与试验[J]. 农业工程学报, 2021, 37(22): 31-40. DOI: 10.11975/j.issn.1002-6819.2021.22.004
    引用本文: 闫德, 汪建晓, 罗陆锋, 刘文涛, 韦慧玲, 王金海, 刘宝立, 卢清华. 断梗激励下葡萄果粒的振动脱落特性与试验[J]. 农业工程学报, 2021, 37(22): 31-40. DOI: 10.11975/j.issn.1002-6819.2021.22.004
    Yan De, Wang jianxiao, Luo Lufeng, Liu Wentao, Wei Huiling, Wang Jinhai, Liu Baoli, Lu Qinghua. Vibration shedding characteristics of the grapes under the excitation of broken stems and experimental research[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(22): 31-40. DOI: 10.11975/j.issn.1002-6819.2021.22.004
    Citation: Yan De, Wang jianxiao, Luo Lufeng, Liu Wentao, Wei Huiling, Wang Jinhai, Liu Baoli, Lu Qinghua. Vibration shedding characteristics of the grapes under the excitation of broken stems and experimental research[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(22): 31-40. DOI: 10.11975/j.issn.1002-6819.2021.22.004

    断梗激励下葡萄果粒的振动脱落特性与试验

    Vibration shedding characteristics of the grapes under the excitation of broken stems and experimental research

    • 摘要: 针对夹剪式鲜食葡萄采摘中的断梗振动激励引起的果粒脱落问题,对断梗激励下鲜食葡萄的振动脱落特性与动态响应进行研究。首先建立葡萄果实-分梗动力学模型,推导果实脱落的理论角速度,分析果实-果梗摆动脱落的临界分离条件。然后利用ABAQUS软件分析单颗粒葡萄在断梗激振下的动态响应与摆动趋势,探索在无挤压状态下果实形变过程,从而预测串型葡萄在断梗激励下的实际振动响应。最后对串型葡萄的简化模型进行振动有限元分析,获得葡萄果实在脱落前瞬间相对于果梗结合处的位移、速度、加速度和应力应变等数据,从而确定葡萄的临界振动脱落参数组合。通过仿真试验和采摘振动试验验证模型的准确性。结果表明:在断梗激励下,葡萄果实出现不确定的各向异性扭转摆动;对整串葡萄进行0~25 Hz的扫频分析可知受振果实的临界脱落频率约为4 Hz;受振果实摆动幅度为49.88 mm,速度峰值0.92 mm/s,加速度峰值39.08 mm/s2时开始脱落;同一激励下,虽然各个果实位置不同,但它们振动特性变化趋势相同。该研究可为防脱落采摘机构参数设计提供理论依据。

       

      Abstract: Abstract: Fruit particle shedding can be often caused by the vibration excitation of broken stems in the clip-cut grape picking. In this study, a dynamic model of the fruit-stem-dividing plane pendulum in the vertical plane was first established, according to the actual growth of grapes. The theoretical angular velocity of fruit shedding was then deduced under the excitation force of the broken stem. After that, the critical condition was determined for the separation of the fruit-stalk swing and falling off, where the swing trajectory was actually a part of the circular motion. In research objects, the freshly picked round grapes were collected to survey with a similar appearance, maturity, and no damage on the surface. The main physical characteristics of the grapes were also measured at the ripening stage in turn. Specifically, the average length of the main stalk of grapes was 214.44 mm, the average longitudinal diameter of the grape berries was 28.99 mm and the equatorial diameter was 26.45 mm; the average weight was 20.01 g; the average hardness was 9.44 kg/cm2; the weight of the stalk was 7.53 g. In a simulation, a SolikWorks2020 three-dimensional modeling software was utilized to model the grapes. Then the ABAQUS software was used to analyze the dynamic response and swing trend of a single grape under the excitation of broken stems. As such, the swing and deformation trends of a single grape were determined under the excitation of broken stems without squeezing. Since there was much squeezing between the grape particles, the model was simplified to 14 independent, isotropic, and uniform linear elastic spherical particles. The main shearing stem was also applied for the simplified clamping model, thereby collecting the input information, such as the shear force, and the clamping force under the excitation of the broken stem. The simulation test showed that the shear force was 6.454 N when cutting the main stem, and the clamping force changed from the initial 3.3 N to the maximum 6.4 N. The finite element analysis was then performed on the vibration using the simplified model of cluster grapes. A dataset was thus obtained, including the displacement, velocity, acceleration, as well as the stress and strain of the grape fruit relative to the junction of the fruit stalk at the moment before falling off. An optimal combination of parameters was achieved to determine the critical vibration shedding of the grapes. In the 18-order modal analysis, the vibration excitation was transmitted to the vibrated fruit via the main stem-sub-stem-fruit three levels, where the fruit particles appeared the indefinite anisotropic torsional swing. Specifically, the 0-25 Hz sweep frequency was selected for the whole bunch of grapes under modal superposition. Consequently, the frequency of the vibrated fruit suddenly changed to a peak frequency of 4 Hz, and then rapidly attenuated to 0 under the excitation. The maximum swing amplitude of the vibrated fruit was 49.88 mm, the peak velocity was 0.92 mm/s, and the acceleration peak was 39.08 mm/s2, ranging from the shedding and then gradually decay to 0 in a picking cycle. The vibration frequency of the fruit particles presented a great mutation over their own natural frequency. At this time, the tertiary fruit-stalk junction was broken to cause the particles to fall off. The trend of vibration was the same under the same excitation, although the position of each fruit was different. The finding can provide a theoretical basis for the parameter design of anti-shedding picking.

       

    /

    返回文章
    返回