2019 Volume 9 Issue 2
Article Contents

Behzad Ghanbari, Mustafa Inc, Lavdie Rada. SOLITARY WAVE SOLUTIONS TO THE TZITZÉICA TYPE EQUATIONS OBTAINED BY A NEW EFFICIENT APPROACH[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 568-589. doi: 10.11948/2156-907X.20180103
Citation: Behzad Ghanbari, Mustafa Inc, Lavdie Rada. SOLITARY WAVE SOLUTIONS TO THE TZITZÉICA TYPE EQUATIONS OBTAINED BY A NEW EFFICIENT APPROACH[J]. Journal of Applied Analysis & Computation, 2019, 9(2): 568-589. doi: 10.11948/2156-907X.20180103

SOLITARY WAVE SOLUTIONS TO THE TZITZÉICA TYPE EQUATIONS OBTAINED BY A NEW EFFICIENT APPROACH

  • The properties of Tzitzéica equations in nonlinear optics have received a great attention of many recent studies. In this work, the so-called generalized exponential rational function method (GERFM) has been applied for finding the analytical solution of two nonlinear partial differential equations type of equations, namely Tzitzéica-Dodd-Bullough and Tzitzéica equation. The proposed method provides a wide range of closed-form travelling solutions leading to a very effective and simply-applied method by means of a symbolic computation system. The method not only provides a general form of solutions with some free parameters but also shows potential application to other types of nonlinear partial differential equations.
    MSC: 35C08, 35C07, 35Q60
  • 加载中
  • [1] R. Abazari, The $(\frac{G}{Ga?2})$-expansion method for Tzitzéica type nonlinear evolution equations, Math. Comp. Model, 2010, 52, 1834-1845. doi: 10.1016/j.mcm.2010.07.013

    CrossRef $(\frac{G}{Ga?2})$-expansion method for Tzitzéica type nonlinear evolution equations" target="_blank">Google Scholar

    [2] M. A. Abdou, The extended tanh method and its applications for solving nonlinear physical models, Appl. Math. Comput, 2017, 190, 988-996.

    Google Scholar

    [3] A. Bekir, M. Kaplan, Exponential rational function method for solving nonlinear equations arising in various physical models, Chin. J. Phys, 2016, 54, 365-370. doi: 10.1016/j.cjph.2016.04.020

    CrossRef Google Scholar

    [4] D. Baleanu, M. Inc, A. Yusuf, A. I. Aliyu, Optical solitons, nonlinear self-adjointness and conservation laws for Kundu-Eckhaus equation, Chin. J. Phys, 2017, 55, 2341-2355. doi: 10.1016/j.cjph.2017.10.010

    CrossRef Google Scholar

    [5] H. M. Baskonus, T. A. Sulaiman, H. Bulut, T. Akturk, Investigations of dark, bright, combined dark-bright optical and other soliton solutions in the complex cubic nonlinear Schrödinger equation with $\delta$-potential, Superlattice Microst, 2018, 115, 19-29. doi: 10.1016/j.spmi.2018.01.008

    CrossRef $\delta$-potential" target="_blank">Google Scholar

    [6] H. Bulut, T. Akturk, H. M. Baskonus, Optical solitons to the resonant nonlinear Schrödinger equation with both spatio-temporal and inter-modal dispersions under Kerr law nonlinearity, Optik, 2018, 163, 49-55. doi: 10.1016/j.ijleo.2018.02.081

    CrossRef Google Scholar

    [7] B. Ghanbari, M. Inc, A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation, Eur Phys J Plus, 2018, 133(4), 142. doi: 10.1140/epjp/i2018-11984-1

    CrossRef Google Scholar

    [8] K. Hosseini, A. Bekir, M. Kaplan, New exact traveling wave solutions of the Tzitzéica-type evolution equations arising in non-linear optics, J. Mod. Mod. Opt, 2017, 64, 1688-1692. doi: 10.1080/09500340.2017.1302607

    CrossRef Google Scholar

    [9] K. Hosseini, Z. Ayati, R. Ansari, New exact traveling wave solutions of the Tzitzéica type equations using a novel exponential rational function method, Optik, 2017, 130, 737-742. doi: 10.1016/j.ijleo.2016.10.136

    CrossRef Google Scholar

    [10] J. H. He, An elementary introduction to recently developed asymptotic methods and nanome-chanics in textile engineering, Int. J. Mod. Phys. B, 2018, 22, 3487-3578.

    Google Scholar

    [11] M. Inc, A. I Aliyu, A. Yusuf, Traveling wave solutions and conservation laws of some fifth-order nonlinear equations, European. Physical. Journal. Plus, 2017, 132-224.

    Google Scholar

    [12] M. Inc, A. Yusuf, A. I. Aliyu, Dark optical and other Soliton solutions for the three different nonlinear Shrödinger's equations, Opt Quant Electron, 2017, 49, 354. doi: 10.1007/s11082-017-1187-0

    CrossRef Google Scholar

    [13] M. Inc, A. Yusuf, A. I. Aliyu, D. Baleanu, Time-fractional Cahn-Allen and time-fractional Klein-Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis, Physica A, 2018, 493, 94-106. doi: 10.1016/j.physa.2017.10.010

    CrossRef Google Scholar

    [14] M. Inc, AI. Aliyu, A. Yusufa, D. Baleanu, Combined optical solitary waves and conservation laws for nonlinear Chen-Lee-Liu equation in optical fibers, Optik, 2018, 158, 297-304. doi: 10.1016/j.ijleo.2017.12.075

    CrossRef Google Scholar

    [15] D. Kumar, K. Hosseini, F. Samadani, The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitzéica type equations in nonlinear optics, Optik, 2017, 148, 439-446.

    Google Scholar

    [16] M. Kaplan, K. Hosseini, Investigation of exact solutions for the Tzitzéica type equations in nonlinear optics, Optik, 2018, 154, 393-397. doi: 10.1016/j.ijleo.2017.08.116

    CrossRef Google Scholar

    [17] J. Manafian, M. Lakestani, Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics, Opt. Quantum Electron, 2016, 48, 116. doi: 10.1007/s11082-016-0371-y

    CrossRef Google Scholar

    [18] W. Malfliet, The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations, J Comput Math, 2004, 164, 529-541.

    Google Scholar

    [19] W. Malfliet, Solitary wave solutions of nonlinear wave equations, Am J Phys, 1992, 60(7), 650-654. doi: 10.1119/1.17120

    CrossRef Google Scholar

    [20] S. T. Mohyud-Din, S. Bibi, Exact solutions for nonlinear fractional differential equations using exponential rational function method, Opt Quant Electron, 2017, 49, 64. doi: 10.1007/s11082-017-0895-9

    CrossRef Google Scholar

    [21] M. S. Osman, B. Ghanbari, New optical solitary wave solutions of Fokas-Lenells equation in presence of perturbation terms by a novel approach, Optik, 2018, 175, 328-333. doi: 10.1016/j.ijleo.2018.08.007

    CrossRef Google Scholar

    [22] M. S. Osman, H. I. Abdel-Gawad, M. A. El Mahdy, Two-layer-atmospheric blocking in a medium with high nonlinearity and lateral dispersion, Results in Physics, 2018, 8, 1054-1060. doi: 10.1016/j.rinp.2018.01.040

    CrossRef Google Scholar

    [23] M. S. Osman, On complex wave solutions governed by the 2D Ginzburg-Landau equation with variable coefficients, Optik, 2018, 156, 169-174. doi: 10.1016/j.ijleo.2017.10.127

    CrossRef Google Scholar

    [24] M. S. Osman, J. A. T. Machado, D. Baleanu, On nonautonomous complex wave solutions described by the coupled Schrodinger-Boussinesq equation with variable-coefficients, Opt Quant Electron, 2018, 50, 73. doi: 10.1007/s11082-018-1346-y

    CrossRef Google Scholar

    [25] M. S. Osman, A. Korkmaz, H. Rezazadehd, M. Eslami, Q. Zhou, The unified method for conformable time fractional Schrodinger equation with perturbation terms, Chinese Journal of Physics. Doi: 10.1016/j.cjph.2018.06.009.

    Google Scholar

    [26] M. S. Osman, Abdul-MajidWazwaz, An efficient algorithm to construct multi-soliton rational solutions of the (2+ 1)-dimensional KdV equation with variable coefficients, Appl Math Comput, 2018, 321, 282-289.

    Google Scholar

    [27] M. S. Osman, J. A. T. Machado, The dynamical behavior of mixed-type soliton solutions described by (2+1)-dimensional Bogoyavlensky–Konopelchenko equation with variable coefficients, J Electromagnet Wave, 2018, 32(11), 1457-1464. doi: 10.1080/09205071.2018.1445039

    CrossRef Google Scholar

    [28] M. S. Osman, J. A. T. Machado, New nonautonomous combined multi-wave solutions for (2+1)-dimensional variable coefficients KdV equation, Nonlinear Dyn, 2018, 93, 733. doi: 10.1007/s11071-018-4222-1

    CrossRef Google Scholar

    [29] M. S. Osman, On multi-soliton solutions for the -dimensional breaking soliton equation with variable coefficients in a graded-index waveguide, Comput Math Appl, 2018, 75(1), 1-6.

    Google Scholar

    [30] M. S. Osman, Analytical study of rational and double-soliton rational solutions governed by the KdV-Sawada-Kotera-Ramani equation with variable coefficients, Nonlinear Dynam, 2017, 89(3), 2283-2289.

    Google Scholar

    [31] M. M. Al Qurashi, A. Yusuf, A. I. Aliyu, M. Inc, Soliton solutions and Conservation laws for Lossy Nonlinear Transmission line equation, Superlattice Microst, 2017, 107, 320-336. doi: 10.1016/j.spmi.2017.04.003

    CrossRef Google Scholar

    [32] G. Tzitzeica, Sur une nouvelle classe de surfaces, C. R. Acad. Sc, 1910, 150, 955-956.

    Google Scholar

    [33] G. Tzitzeica, Sur une nouvelle classe de surfaces, C. R. Acad. Sc, 1910, 150, 1227-1229.

    Google Scholar

    [34] E. Tala-Tebue, Z. I. Djoufack, D. C. Tsobgni-Fozap, A. Kenfack-Jiotsa, F. Kapche-Tagne, T. C. Kofan, Traveling wave solutions along microtubules and in the Zhibera-Shabat equation, Chin. J. Phys, 2017, 55, 939-946. doi: 10.1016/j.cjph.2017.03.004

    CrossRef Google Scholar

    [35] F. Tchier, AI. Aliyu, A. Yusuf, M. Inc, Dynamics of solitons to the ill-posed Boussinesq equation, Eur Phys J Plus, 2018, 32, 136.

    Google Scholar

    [36] F. Tchier, A. Yusuf, A. I Aliyu, M. Inc, Optical and other solitons for the fourth-order dispersive nonlinear Shrödinger's equation with dual-power law nonlinearity, Superlattice Microst, 2018, 105, 183-197.

    Google Scholar

    [37] A. M. Wazwaz, The tanh method: solitons and periodic solutions for the Dodd-Bullough-Mikhailov and the Tzitzeica- Dodd-Bullough equations, Chaos Soliton. Fract, 2005, 25, 55-63. doi: 10.1016/j.chaos.2004.09.122

    CrossRef Google Scholar

    [38] A. M. Wazwaz, The extended tanh method for the Zakharova??Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms, Commun Nonlinear Sci Numer Simul, 2008, 13(6), 1039-1047. doi: 10.1016/j.cnsns.2006.10.007

    CrossRef Google Scholar

    [39] A. M. Wazwaz, New travelling wave solutions to the Boussinesq and the Klein-Gordon equations, Commun Nonlinear Sci Numer Simul, 2018, 13(5), 889-901.

    Google Scholar

    [40] A. M. Wazwaz, The tanh method for travelling wave solutions of nonlinear equations, Appl. Math. Comput, 2014, 154, 714-723.

    Google Scholar

    [41] A. M. Wazwaz, M. S. Osman, Analyzing the combined multi-waves polynomial solutions in a two-layer-liquid medium, Comput Math Appl, 2018, 76(2), 276-283.

    Google Scholar

    [42] X. Yang, J. Tang, Travelling wave solutions for Konopelchenko-Dubrovsky equation using an extended sinh-Gordon equation expansion method, Commun. Theor. Phys, 2008, 50, 1047-1051. doi: 10.1088/0253-6102/50/5/06

    CrossRef Google Scholar

Figures(6)

Article Metrics

Article views(2796) PDF downloads(752) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint