2023 Volume 13 Issue 6
Article Contents

Özlem AK GÜMÜŞ. A STUDY ON STABILITY, BIFURCATION ANALYSIS AND CHAOS CONTROL OF A DISCRETE-TIME PREY-PREDATOR SYSTEM INVOLVING ALLEE EFFECT[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3166-3194. doi: 10.11948/20220532
Citation: Özlem AK GÜMÜŞ. A STUDY ON STABILITY, BIFURCATION ANALYSIS AND CHAOS CONTROL OF A DISCRETE-TIME PREY-PREDATOR SYSTEM INVOLVING ALLEE EFFECT[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3166-3194. doi: 10.11948/20220532

A STUDY ON STABILITY, BIFURCATION ANALYSIS AND CHAOS CONTROL OF A DISCRETE-TIME PREY-PREDATOR SYSTEM INVOLVING ALLEE EFFECT

  • This paper examines the stability and bifurcation of a discrete-time prey-predator system that is modified by the Allee effect on the prey population. The system undergoes flip and Neimark-Sacker bifurcations in a small neighborhood of the unique positive fixed point depending on the densities of prey-predator. The OGY method and hybrid control method are used to control the chaotic behavior that results from Neimark-Sacker bifurcation. In addition, numerical simulations are performed to illustrate the theoretical results. To keep the ecosystem stable, it is crucial to research how populations of prey and predator interact. The Allee effect is a significant evolutionary force that alters population size by affecting both prey and predator behavior. It would be more realistic to look into population behavior in light of this effect, which results from population density (number of individuals per unit area). The increase in the density of predator in the model with the Allee effect pushes the prey to extinction. When the density of predator is suppressed, the stability continues for a certain time before undergoing bifurcation.

    MSC: 37G35, 39A30, 39A33, 91B76, 92B05, 92D25
  • 加载中
  • [1] W. C. Allee, Animal Aggregations, a Study in General Sociology, Chicago, The University of Chicago Press, 1931.

    Google Scholar

    [2] L. J. Allen, Introduction to Mathematical Biology, Pearson/Prentice Hall, 2007.

    Google Scholar

    [3] P. Baydemir, H. Merdan, E. Karaoglu and G. Sucu, Complex dynamics of a discrete-time prey-predator system with leslie type: stability, bifurcation analyses and chaos, International Journal of Bifurcation and Chaos, 2020, 30(10), 2050149. doi: 10.1142/S0218127420501497

    CrossRef Google Scholar

    [4] S. Boccaletti, C. Grebogi, Y.-C. Lai, et al., The control of chaos: theory and applications, Physics reports, 2000, 329(3), 103-197. doi: 10.1016/S0370-1573(99)00096-4

    CrossRef Google Scholar

    [5] F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, 2, Springer, 2012.

    Google Scholar

    [6] C. Celik and O. Duman, Allee effect in a discrete-time predator-prey system, Chaos, Solitons & Fractals, 2009, 40(4), 1956-1962.

    Google Scholar

    [7] Z. Chen, Q. Din, M. Rafaqat, et al., Discrete-time predator-prey interaction with selective harvesting and predator self-limitation, Journal of Mathematics, 2020, 2020.

    Google Scholar

    [8] F. Courchamp, L. Berec and J. Gascoigne, Allee in Ecology and Conservation, OUP Oxford, 2008.

    Google Scholar

    [9] F. Courchamp, B. Grenfell and T. Clutton-Brock, Impact of natural enemies on obligately cooperative breeders, Oikos, 2000, 91(2), 311-322. doi: 10.1034/j.1600-0706.2000.910212.x

    CrossRef Google Scholar

    [10] M. Danca, S. Codreanu and B. Bako, Detailed analysis of a nonlinear prey-predator model, Journal of Biological Physics, 1997, 23(1), 11. doi: 10.1023/A:1004918920121

    CrossRef Google Scholar

    [11] M.-F. Danca, M. Fečkan, N. Kuznetsov and G. Chen, Rich dynamics and anticontrol of extinction in a prey-predator system, Nonlinear Dynamics, 2019, 98(2), 1421-1445. doi: 10.1007/s11071-019-05272-3

    CrossRef Google Scholar

    [12] Q. Din, Dynamics of a discrete Lotka-Volterra model, Advances in Difference Equations, 2013, 2013(1), 1-13. doi: 10.1186/1687-1847-2013-1

    CrossRef Google Scholar

    [13] Q. Din, Bifurcation analysis and chaos control in discrete-time glycolysis models, Journal of Mathematical Chemistry, 2018, 56(3), 904-931. doi: 10.1007/s10910-017-0839-4

    CrossRef Google Scholar

    [14] Q. Din, Controlling chaos in a discrete-time prey-predator model with allee effects, International Journal of Dynamics and Control, 2018, 6(2), 858-872. doi: 10.1007/s40435-017-0347-1

    CrossRef Google Scholar

    [15] Q. Din, T. Donchev and D. Kolev, Stability, bifurcation analysis and chaos control in chlorine dioxide-iodine-malonic acid reaction, MATCH Commun. Math. Comput. Chem, 2018, 79(3), 577-606.

    Google Scholar

    [16] Q. Din, Ö. A. Gümüş and H. Khalil, Neimark-sacker bifurcation and chaotic behaviour of a modified host-parasitoid model, Zeitschrift für Naturforschung A, 2017, 72(1), 25-37. doi: 10.1515/zna-2016-0335

    CrossRef Google Scholar

    [17] Q. Din and U. Saeed, Bifurcation analysis and chaos control in a host-parasitoid model, Mathematical Methods in the Applied Sciences, 2017, 40(14), 5391-5406. doi: 10.1002/mma.4395

    CrossRef Google Scholar

    [18] J. M. Drake, Allee effects and the risk of biological invasion, Risk Analysis: An International Journal, 2004, 24(4), 795-802. doi: 10.1111/j.0272-4332.2004.00479.x

    CrossRef Google Scholar

    [19] E. Elabbasy, H. Agiza, H. El-Metwally and A. Elsadany, Bifurcation analysis, chaos and control in the burgers mapping, Int. J. Nonlinear Sci., 2007, 4(3), 171-185.

    Google Scholar

    [20] S. N. Elaydi, An Introduction to Difference Equations, Springer-Verlag, New York, NY, USA, 1996.

    Google Scholar

    [21] A. Elsadany, Q. Din and S. Salman, Qualitative properties and bifurcations of discrete-time bazykin-berezovskaya predator-prey model, International Journal of Biomathematics, 2020, 13(06), 2050040. doi: 10.1142/S1793524520500400

    CrossRef Google Scholar

    [22] A.-E. A. Elsadany, H. El-Metwally, E. Elabbasy and H. Agiza, Chaos and bifurcation of a nonlinear discrete prey-predator system, Computational Ecology and Software, 2012, 2(3), 169.

    Google Scholar

    [23] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, 57, Marcel Dekker Incorporated, 1980.

    Google Scholar

    [24] A. George Maria Selvam, R. Dhineshbabu and Ö. A. Gümüş, Complex dynamic behavior of a discrete prey-predator-scavenger model with fractional order, Journal of Computational and Theoretical Nanoscience, 2020, 17(5), 2136-2146. doi: 10.1166/jctn.2020.8860

    CrossRef Google Scholar

    [25] C. Grebogi and Y.-C. Lai, Controlling chaotic dynamical systems, Systems & control letters, 1997, 31(5), 307-312.

    Google Scholar

    [26] M. J. Groom, Allee effects limit population viability of an annual plant, The American Naturalist, 1998, 151(6), 487-496. doi: 10.1086/286135

    CrossRef Google Scholar

    [27] Ö. A. Gümüş, Global and local stability analysis in a nonlinear discrete-time population model, Advances in Difference Equations, 2014, 2014(1), 1-9. doi: 10.1186/1687-1847-2014-1

    CrossRef Google Scholar

    [28] Ö. A. Gümüş, Neimark-sacker bifurcation and stability of a prey-predator system, Miskolc Mathematical Notes, 2020, 21(2), 873-885. doi: 10.18514/MMN.2020.3386

    CrossRef Google Scholar

    [29] Ö. A. Gümüş, Bifurcation analysis and chaos control of discrete-time prey-predator model with allee effect, Hacettepe Journal of Mathematics and Statistics, 2023, 1-17.

    Google Scholar

    [30] Ö. A. Gümüş and M. Feckan, Stability, neimark-sacker bifurcation and chaos control for a prey-predator system with harvesting effect on predator, Miskolc Mathematical Notes, 2021, 22(2), 663-679. doi: 10.18514/MMN.2021.3450

    CrossRef Google Scholar

    [31] Ö. A. Gümüs, A. Maria Selvam and R. Janagaraj, Stability of modified host-parasitoid model with allee effect, Applications and Applied Mathematics: An International Journal (AAM), 2020, 15(2), 20.

    Google Scholar

    [32] Ö. A. Gümüş, A. G. Selvam and R. Dhineshbabu, Bifurcation analysis and chaos control of the population model with harvest, International Journal of Nonlinear Analysis and Applications, 2022, 13(1), 115-125.

    Google Scholar

    [33] S. Işık, A study of stability and bifurcation analysis in discrete-time predator-prey system involving the allee effect, International Journal of Biomathematics, 2019, 12(01), 1950011. doi: 10.1142/S1793524519500116

    CrossRef Google Scholar

    [34] F. Kangalgil, N. Topsakal and N. Öztürk, Analyzing bifurcation, stability, and chaos control for a discrete-time prey-predator model with allee effect, Turkish Journal of Mathematics, 2022, 46(6), 2047-2068. doi: 10.55730/1300-0098.3253

    CrossRef Google Scholar

    [35] S. Kapçak, Discrete dynamical systems with sagemath. , Electronic Journal of Mathematics & Technology, 2018, 12(2).

    Google Scholar

    [36] J. L. Kaplan and J. A. Yorke, Preturbulence: a regime observed in a fluid flow model of lorenz, Communications in Mathematical Physics, 1979, 67(2), 93-108. doi: 10.1007/BF01221359

    CrossRef Google Scholar

    [37] A. Khan, Neimark-sacker bifurcation of a two-dimensional discrete-time predator-prey model, SpringerPlus, 2016, 5(1), 1-10. doi: 10.1186/s40064-015-1659-2

    CrossRef Google Scholar

    [38] M. Kuussaari, I. Saccheri, M. Camara and I. Hanski, Allee effect and population dynamics in the glanville fritillary butterfly, Oikos, 1998, 384-392.

    Google Scholar

    [39] Y. A. Kuznetsov, Elements of applied bifurcation theory, 112, Springer, 1998.

    Google Scholar

    [40] X. Liu and D. Xiao, Complex dynamic behaviors of a discrete-time predator-prey system, Chaos, Solitons & Fractals, 2007, 32(1), 80-94.

    Google Scholar

    [41] X. S. Luo, G. Chen, B. H. Wang and J. Q. Fang, Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems, Chaos, Solitons & Fractals, 2003, 18(4), 775-783.

    Google Scholar

    [42] S. Lynch, et al., Dynamical Systems with Applications using Mathematica, Springer, 2007.

    Google Scholar

    [43] R. May, Simple mathematical models with very complicated dynamics, Nature, 1976, 459-467.

    Google Scholar

    [44] R. M. May, Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos, Science, 1974, 186(4164), 645-647. doi: 10.1126/science.186.4164.645

    CrossRef Google Scholar

    [45] H. Merdan and Ö. A. Gümüş, Stability analysis of a general discrete-time population model involving delay and allee effects, Applied Mathematics and Computation, 2012, 219(4), 1821-1832. doi: 10.1016/j.amc.2012.08.021

    CrossRef Google Scholar

    [46] H. Merdan, Ö. A. Gümüş and G. Karahisarli, Global stability analysis of a general scalar difference equation, Discontinuity, Nonlinearity, and Complexity, 2018, 7(3), 225-232. doi: 10.5890/DNC.2018.09.001

    CrossRef Google Scholar

    [47] J. D. Murray, Mathematical Biology I. An Introduction, 17 of Interdisciplinary Applied Mathematics, 3rd Edn, Springer, New York, 2002.

    Google Scholar

    [48] E. Ott, C. Grebogi and J. A. Yorke, Controlling chaos, Physical review letters, 1990, 64(11), 1196. doi: 10.1103/PhysRevLett.64.1196

    CrossRef Google Scholar

    [49] S. Pal, S. K. Sasmal and N. Pal, Chaos control in a discrete-time predator-prey model with weak allee effect, International Journal of Biomathematics, 2018, 11(07), 1850089. doi: 10.1142/S1793524518500894

    CrossRef Google Scholar

    [50] S. S. Rana, Bifurcation and complex dynamics of a discrete-time predator-prey system, Computational Ecology and software, 2015, 5(2), 187.

    Google Scholar

    [51] F. J. Romeiras, C. Grebogi, E. Ott and W. Dayawansa, Controlling chaotic dynamical systems, Physica D: Nonlinear Phenomena, 1992, 58(1-4), 165-192. doi: 10.1016/0167-2789(92)90107-X

    CrossRef Google Scholar

    [52] A. G. M. Selvam, R. Dhineshbabu and Ö. A. Gümüş, Stability and neimark-sacker bifurcation for a discrete system of one-scroll chaotic attractor with fractional order, in Journal of Physics: Conference Series, 1597, IOP Publishing, 2020, 012009.

    Google Scholar

    [53] J. Shi and R. Shivaji, Persistence in reaction diffusion models with weak allee effect, Journal of Mathematical Biology, 2006, 52(6), 807-829. doi: 10.1007/s00285-006-0373-7

    CrossRef Google Scholar

    [54] A. Singh, A. A. Elsadany and A. Elsonbaty, Complex dynamics of a discrete fractional-order leslie-gower predator-prey model, Mathematical Methods in the Applied Sciences, 2019, 42(11), 3992-4007. doi: 10.1002/mma.5628

    CrossRef Google Scholar

    [55] S. Sinha, Controlling chaos in biology, Current Science, 1997, 977-983.

    Google Scholar

    [56] A. W. Stoner and M. Ray-Culp, Evidence for allee effects in an over-harvested marine gastropod: density-dependent mating and egg production, Marine Ecology Progress Series, 2000, 202, 297-302.

    Google Scholar

    [57] S. H. Streipert and G. S. Wolkowicz, An augmented phase plane approach for discrete planar maps: Introducing next-iterate operators, Mathematical Biosciences, 2023, 355, 108924.

    Google Scholar

    [58] S. H. Streipert, G. S. Wolkowicz and M. Bohner, Derivation and analysis of a discrete predator-prey model, Bulletin of Mathematical Biology, 2022, 84(7), 67.

    Google Scholar

    [59] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, CRC press, 2018.

    Google Scholar

    [60] J. T. Tanner, The stability and the intrinsic growth rates of prey and predator populations, Ecology, 1975, 56(4), 855-867.

    Google Scholar

    [61] C. M. Taylor and A. Hastings, Allee effects in biological invasions, Ecology Letters, 2005, 8(8), 895-908.

    Google Scholar

    [62] J. Wang and M. Fečkan, Dynamics of a discrete nonlinear prey-predator model, International Journal of Bifurcation and Chaos, 2020, 30(4), 2050055.

    Google Scholar

    [63] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, 2003.

    Google Scholar

    [64] L.-G. Yuan and Q.-G. Yang, Bifurcation, invariant curve and hybrid control in a discrete-time predator-prey system, Applied Mathematical Modelling, 2015, 39(8), 2345-2362.

    Google Scholar

    [65] J. Zu and M. Mimura, The impact of allee effect on a predator-prey system with holling type II functional response, Applied Mathematics and Computation, 2010, 217(7), 3542-3556.

    Google Scholar

Figures(10)

Article Metrics

Article views(785) PDF downloads(161) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint