Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (6): 519-526    DOI: 10.11902/1005.4537.2019.229
  研究报告 本期目录 | 过刊浏览 |
Corten-A耐候钢在模拟污染海洋大气环境中的加速腐蚀相关性研究
冯亚丽1,白子恒1,陈利红1,魏丹2,张东玖3,姚琼3,吴俊升1,董超芳1,肖葵1()
1. 北京科技大学新材料技术研究院 腐蚀与防护中心 北京 100083
2. 中国科学技术学会服务中心 北京 100081
3. 西昌卫星发射中心航天发射场 可靠性技术重点实验室 海口 571000
Correlation of Indoor Accelerated Corrosion with Outdoor Exposure for Corten-A Weathering Steel in Polluted Marine Atmospheric Environments
FENG Yali1,BAI Ziheng1,CHEN Lihong1,WEI Dan2,ZHANG Dongjiu3,YAO Qiong3,WU Junsheng1,DONG Chaofang1,XIAO Kui1()
1. Corrosion and Protection Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2. Service Center for Societies, China Association for Science and Technology, Beijing 100081, China
3. Xichang Satelite Lauch Center Key Laboratory of Space Lauching Site Reliability Technology, Haikou 571000, China
全文: PDF(3186 KB)   HTML
摘要: 

采用周浸加速腐蚀实验模拟Corten-A耐候钢在青岛和万宁两种污染海洋大气环境中的腐蚀过程,通过失重法、SEM分析、X射线衍射、电化学测试及灰色关联分析等方法,研究Corten-A钢在模拟污染海洋大气环境下的腐蚀动力学、腐蚀形貌、腐蚀产物及室内外实验的相关性。结果表明:随着加速实验的模拟溶液中NaCl浓度的升高,Corten-A钢的腐蚀程度先增大后减小,NaCl浓度为5% (质量分数) 时,浸润液对Corten-A钢腐蚀作用最大;室内周浸加速实验结果与室外污染海洋大气环境中的实际腐蚀情况相关性较好;分别建立了Corten-A耐候钢在青岛和万宁污染海洋大气环境下的室内加速模型:TQD=251.214 t 0.718TWN=217.498 t 0.719

关键词 Corten-A钢加速实验污染海洋大气相关性加速模型    
Abstract

The corrosion behavior of Corten-A weathering steel in two polluted marine atmospheric environments at coastal cities Qingdao and Wanning was simulated by cyclic immersion accelerated test. The corrosion kinetics, corrosion morphology, corrosion products and the correlation between results acquired form the accelerated corrosion test and the outdoors exposure test were studied by weight-loss method, SEM technique, X-ray diffraction analysis, electrochemical measurement techniques and grey correlation analysis. The results showed that the corrosion degree of Corten-A steel increased first and then decreased with the increasing of NaCl concentration in the simulated solution, while the solution with 5% (mass fraction) NaCl presented the greatest corrosion effect on Corten-A steel. It follows that results of the indoor accelerated corrosion tests are well correlated with those of the outdoor exposure in natural marine atmospheric environments. Besides, models suitable to describe the corrosion process of Corten-A weathering steel in the simulated polluted marine atmospheric environments of Qingdao and Wanning were established respectively as: TQD=251.214 t 0.718, TWN=217.498 t 0.719.

Key wordsCorten-A steel    accelerated experiments    polluted marine atmosphere    correlation    acceleration model
收稿日期: 2019-04-04     
ZTFLH:  TG172.3  
基金资助:国家重点研发计划(2017YFB0304602)
通讯作者: 肖葵     E-mail: xiaokui@ustb.edu.cn
Corresponding author: Kui XIAO     E-mail: xiaokui@ustb.edu.cn
作者简介: 冯亚丽,女,1995年生,硕士生

引用本文:

冯亚丽,白子恒,陈利红,魏丹,张东玖,姚琼,吴俊升,董超芳,肖葵. Corten-A耐候钢在模拟污染海洋大气环境中的加速腐蚀相关性研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 519-526.
Yali FENG, Ziheng BAI, Lihong CHEN, Dan WEI, Dongjiu ZHANG, Qiong YAO, Junsheng WU, Chaofang DONG, Kui XIAO. Correlation of Indoor Accelerated Corrosion with Outdoor Exposure for Corten-A Weathering Steel in Polluted Marine Atmospheric Environments. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 519-526.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.229      或      https://www.jcscp.org/CN/Y2019/V39/I6/519

图1  试样在不同浓度模拟溶液中的周浸实验失重拟合曲线
Mass fraction of NaCl / %R2An
10.994939.153550.73313
20.986694.371990.87025
3.50.983082.990440.90281
50.995182.083810.94905
70.970183.713650.85243
表1  拟合曲线参数
图2  试样在不同NaCl配比溶液中实验不同周期后的微观腐蚀形貌
图3  试样在3.5%NaCl+NaHSO3溶液中周浸实验96和360 h后腐蚀产物XRD图谱
图4  试样在不同溶液中的极化曲线
Test timeOutdoor exposure1%NaCl2%NaCl3.5%NaCl5%NaCl7%NaCl
X0X1X2X3X4X5
1 a (216 h)535.45471.03470.15383.09342.27362.88
2 a (432 h)825.74782.96859.43716.27660.79655.19
4 a (864 h)1273.351301.481571.011339.211275.721182.97
8 a (1728 h)1963.602163.372871.782503.932462.912135.90
12 a (2592 h)2529.902912.244086.913610.763618.833017.77
16 a (3456 h)3028.143596.045249.564681.614754.903856.45
表2  青岛地区腐蚀失重量统计 (mass loss / (g·m-2))
Test timeOutdoor exposure1%NaCl2%NaCl3.5%NaCl5%NaCl7%NaCl
X0X1X2X3X4X5
1 a (72 h)385.83210.50180.73142.09120.66142.25
2 a (144 h)456.48349.90330.37265.66232.94256.83
4 a (288 h)540.00581.63603.90496.71449.72463.73
8 a (576 h)638.83966.801103.92928.69868.23837.27
12 a (864 h)704.851301.481571.011339.211275.721182.97
16 a (1152 h)755.801607.062017.941736.381676.211511.73
表3  万宁地区腐蚀失重量统计 (mass loss / (g·m-2))
Test timeOutdoor exposure1%NaCl2%NaCl3.5%NaCl5%NaCl7%NaCl
Y0Y1Y2Y3Y4Y5
1 a (216 h)1.00001.00001.00001.00001.00001.0000
2 a (432 h)1.54211.66221.82801.86971.93061.8056
4 a (864 h)2.37812.76303.34153.49583.72723.2600
8 a (1728 h)3.66724.59296.10826.53617.19585.8860
12 a (2592 h)4.72486.18278.69289.425310.57308.3162
16 a (3456 h)5.65537.634411.165712.220613.892210.6274
表4  青岛地区腐蚀失重数据预处理结果
Test timeOutdoor exposure1%NaCl2%NaCl3.5%NaCl5%NaCl7%NaCl
Y0Y1Y2Y3Y4Y5
1 a (72 h)1.00001.00001.00001.00001.00001.0000
2 a (144 h)1.18311.66221.8281.86971.93061.8055
4 a (288 h)1.39962.76303.34153.49583.72723.2600
8 a (576 h)1.65574.59296.10826.53617.19585.8860
12 a (864 h)1.82697.28168.69289.425310.57308.3162
16 a (1152 h)1.959012.103811.165712.220613.892210.6274
表5  万宁地区腐蚀失重数据预处理结果
Test time1%NaCl2%NaCl3.5%NaCl5%NaCl7%NaCl
Δ01Δ02Δ03Δ04Δ05
1 a (216 h)00000
2 a (432 h)0.12010.28580.32760.38850.2634
4 a (864 h)0.38500.96341.11771.34910.8819
8 a (1728 h)0.92562.44102.86893.52862.2188
12 a (2592 h)1.45793.96794.70055.84813.5914
16 a (3456 h)1.97915.51046.56528.23684.9721
表6  青岛地区腐蚀失重的绝对差
Test time1%NaCl2%NaCl3.5%NaCl5%NaCl7%NaCl
Δ01Δ02Δ03Δ04Δ05
1 a (216 h)00000
2 a (432 h)0.47910.64490.68660.74750.6224
4 a (864 h)1.36351.94192.09622.32761.8604
8 a (1728 h)2.93714.45254.88045.54004.2303
12 a (2592 h)5.45486.86597.59858.74616.4894
16 a (3456 h)10.14509.206810.261711.93338.6685
表7  万宁地区腐蚀失重的绝对差
Area1%NaCl2%NaCl3.5%NaCl5%NaCl7%NaCl
Qingdao0.850.720.690.660.73
Wanning0.720.680.670.640.69
表8  室内外实验的灰色关联度
图5  不同NaCl模拟溶液与青岛海洋大气的灰色关联度和加速比
图6  不同NaCl模拟溶液与万宁海洋大气的灰色关联度和加速比
Outdoor exposure time / aIndoor acceleration time (Qingdao) / hIndoor acceleration time (Wanning) / h
1251217
2413358
4680589
81118970
1013121138
表9  预测模型所得Corten-A钢在青岛和万宁的室内加速实验时间
[1] Wang Z F, Wu L X, Sun Y Q, et al. Structure and formation mechanism of rust scales on 09CuPCrNi weathering steel in wet-dry cyclic corrosion [J]. Corros. Prot., 2012, 33: 110
[1] (王志奋, 吴立新, 孙宜强等. 09CuPCrNi耐候钢干湿交替加速腐蚀的锈层结构与形成机理 [J]. 腐蚀与防护, 2012, 33: 110)
[2] Yu Q. Review and prospect of weathering steel [J]. J. Iron Steel Res., 2007, 19(11): 1
[2] (于千. 耐候钢发展现状及展望 [J]. 钢铁研究学报, 2007, 19 (11): 1)
[3] Xia X M, Xing L K, Song H Q, et al. Corrosion resistance of weathering steels in simulated South China Sea atmospheric environment [J]. Equip. Environ. Eng., 2018, 15(3): 39
[3] (夏昕鸣, 邢路阔, 宋泓清等. 模拟南海大气环境下耐候钢腐蚀性能研究 [J]. 装备环境工程, 2018, 15(3): 39)
[4] Li X G. Introduction to Corrosion and Protection of Materials [M]. 2nd Ed. Beijing: Mechanical Industry Press, 2017: 130
[4] (李晓刚. 材料腐蚀与防护概论 [M]. 第2版. 北京: 机械工业出版社, 2017: 130)
[5] Luo H, Dong C F, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution [J]. Appl. Surf. Sci., 2011, 258: 631
[6] Zhu F, Persson D, Thierry D, et al. Formation of corrosion products on open and confined zinc surfaces exposed to periodic wet/dry conditions [J]. Corrosion, 2000, 56: 1256
[7] Lin C, Wang F P, Li X G. The progress of research methods on atmospheric corrosion [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 250
[7] (林翠, 王凤平, 李晓刚. 大气腐蚀研究方法进展 [J]. 中国腐蚀与防护学报, 2004, 24: 250)
[8] Dra?i? D M, Va??i? V. The correlation between accelerated laboratory corrosion tests and atmospheric corrosion station tests on steels [J]. Corros. Sci., 1989, 29: 1197
[9] Wang X, Xiao K, Cheng X Q, et al. Corrosion prediction model of Q235 steel in polluted marine atmospheric environment [J]. J. Mater. Eng., 2017, 45(4): 51
[9] (王旭, 肖葵, 程学群等. Q235钢的污染海洋大气环境腐蚀寿命预测模型 [J]. 材料工程, 2017, 45(4): 51)
[10] Li X G, Xiao K, Dong C F, et al. Corrosion mechanisms and classification in marine atmosphere of China [A]. Proceedings of the 2014 conferences on Corrosion and Protection of Marine Materials [C]. Beijing, 2014: 7
[10] (李晓刚, 肖葵, 董超芳等. 我国海洋大气腐蚀分级分类与机理 [A]. 2014海洋材料腐蚀与防护大会论文集 [C]. 北京, 2014: 7)
[11] Li D L, Fu G Q, Zhu M Y. Corrosion characteristics of low-carbon steel in hot and humid industrial—marine atmosphere [J]. Chin. J. Eng., 2017, 39: 739
[11] (李东亮, 付贵勤, 朱苗勇. 低碳钢在湿热工业海洋大气中的腐蚀特征 [J]. 工程科学学报, 2017, 39: 739)
[12] Pan X D, Wang X M. Control of chloride ions in circulating water and influence on stainless steel corrosion [J]. Ind. Water Treat., 2013, 33(3): 14
[12] (潘旭东, 王向明. 循环水中氯离子控制及对不锈钢腐蚀机理探讨 [J]. 工业水处理, 2013, 33(3): 14)
[13] You M R, Jin P, Tan X M, et al. Effects of temperature and chloride ion concentration on corrosion rate of 30CrMnSiNiA [J]. Equip. Environ. Eng., 2017, 14(9): 93
[13] (游明锐, 金平, 谭晓明等. 温度和氯离子浓度对30CrMnSiNiA腐蚀速率的影响研究 [J]. 装备环境工程, 2017, 14(9): 93)
[14] Yu Q C, Wang Z Y, Wang C. Corrosion behaviors of low alloy steel and carbon steel deposited with NaCl and NaHSO3 under dry/humid alternative conditions [J]. Acta Metall. Sin., 2010, 46: 1133
[14] (于全成, 王振尧, 汪川. 表面沉积NaCl和NaHSO3的低合金钢和碳钢在干湿交替条件下的腐蚀行为 [J]. 金属学报, 2010, 46: 1133)
[15] Song L Y, Shi H, Wang W, et al. Effects of corrosion products on atmospheric corrosion of metal [J]. Equip. Environ. Eng., 2018, 15(10): 8
[15] (宋立英, 石浩, 王巍等. 腐蚀产物性质对金属大气腐蚀过程影响的研究 [J]. 装备环境工程, 2018, 15(10): 8)
[16] Liu G C, Dong J H, Han E-H, et al. Progress in research on rust layer of weathering steel [J]. Corros. Sci. Prot. Technol., 2006, 18: 268
[16] (刘国超, 董俊华, 韩恩厚等. 耐候钢锈层研究进展 [J]. 腐蚀科学与防护技术, 2006, 18: 268)
[17] Wang X. Accelerated test and life prediction of structural steels in different marine atmosphere [D]. Beijing: University of Science and Technology Beijing, 2015
[17] (王旭. 结构钢在不同海洋大气环境下的加速试验及寿命预测 [D]. 北京: 北京科技大学, 2015)
[18] Yamashita M, Konishi H, Kozakura T, et al. In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays [J]. Corros. Sci., 2005, 47: 2492
[19] Evans U R. The Corrosion and Oxidation of Metals: First Supplementary Volume [M]. New York: St Martin’s Press, 1968: 197
[20] Matsushima I, Ueno T. On the protective nature of atmosph rust on low-alloy steel [J]. Corros. Sci., 1971, 11: 129
[21] Moutarlier V, Gigandet M P, Normand B, et al. EIS characterisation of anodic films formed on 2024 aluminium alloy, in sulphuric acid containing molybdate or permanganate species [J]. Corros. Sci., 2005, 47: 937
[22] Liu H X, Cheng X Q, Li X G, et al. Prediction model for corrosion of aluminum 1060 in marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 349
[22] (刘海霞, 程学群, 李晓刚等. A1060纯Al的海洋大气环境腐蚀寿命预测模型研究 [J]. 中国腐蚀与防护学报, 2016, 36: 349)
[1] 朱亦晨,刘光明,刘欣,裴锋,田旭,师超. 红壤地区接地材料现场埋样与加速腐蚀实验的相关性研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 550-556.
[2] 崔晓飞, 谭晓明, 王德, 钱昂. 铝合金表面聚氨酯涂层在加速实验条件下的老化机制及规律研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
[3] 毛成亮,肖葵,董超芳,吴俊升,颜利丹,蒋立. 超深冲压用冷轧板在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 101-109.
[4] 骆 鸿 李晓刚 董超芳 肖 葵. 304不锈钢在热带海洋大气下暴露实验
和加速腐蚀实验研究
[J]. 中国腐蚀与防护学报, 2013, 33(3): 193-198.
[5] 周和荣,马坚,李晓刚,揭敢新,冯皓,王俊,赵钺. 高强铝合金在不同SO2模拟环境中的腐蚀行为及相关性研究[J]. 中国腐蚀与防护学报, 2011, 31(6): 446-452.
[6] 聂向晖, 李晓刚,李云龙,李记科, 张鸿博. 土壤腐蚀加速试验的加速比与动力学相关性研究[J]. 中国腐蚀与防护学报, 2011, 31(3): 208-213.
[7] 章小鸽. 镀锌保护钢铁的效率和新型锌镀层的发展前景[J]. 中国腐蚀与防护学报, 2010, 30(2): 166-170.
[8] 胡建文 高瑾 李晓刚 杜翠女. 紫外光对丙烯酸聚氨酯清漆的老化影响规律研究[J]. 中国腐蚀与防护学报, 2009, 29(5): 371-375.
[9] 苏艳; 何德洪; 张伦武; 易平 . 跟踪太阳反射聚能自然加速试验光热强化效应和相关性研究[J]. 中国腐蚀与防护学报, 2008, 28(5): 311-315 .
[10] 许述剑; 翁永基 . 图像灰度与腐蚀特征的相关性研究[J]. 中国腐蚀与防护学报, 2006, 26(6): 321-324 .