Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (3): 231-236    DOI: 10.11902/1005.4537.2013.124
  本期目录 | 过刊浏览 |
H2S浓度和pH值对X65海管钢焊接接头腐蚀行为的影响
邢云颖, 刘智勇, 杜翠薇(), 李晓刚, 刘然克, 朱敏
北京科技大学腐蚀与防护中心 教育部腐蚀与防护重点实验室 北京 100083
Influence of H2S Concentration and pH Value on Corrosion Behavior of Weld Joint of X65 Subsea Pipeline Steel
XING Yunying, LIU Zhiyong, DU Cuiwei(), LI Xiaogang, LIU Ranke, ZHU Min
Key Laboratory of Corrosion and Protection of Ministry of Education, Corrosion and Protection Center University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(3850 KB)   HTML
摘要: 

采用高压釜模拟海底集输环境,通过电化学测试技术、浸泡实验、SEM和XRD技术研究了H2S浓度和pH值对X65钢焊接接头腐蚀行为的影响。结果表明,X65钢焊接接头中热影响区的开路电位最负,焊缝最正,母材介于两者之间,腐蚀电流密度从大到小的顺序为:热影响区>母材>焊缝;焊接接头平均腐蚀速率在0.1~0.25 mm/a之间,硫化物浓度增加、pH值降低均可导致腐蚀速率增加;X65钢海管焊接接头在模拟现场工况条件下以均匀腐蚀为主,焊缝区腐蚀程度低于热影响区。

关键词 X65钢焊接接头海底腐蚀H2S浓度pH值    
Abstract

With an autoclave the environment of submarine gathering system was simulated, then in which the influence of concentration of H2S and pH value on the corrosion behavior of weld joints of X65 pipeline steel was investigated by electrochemical techniques, immersion test, SEM and XRD analysis technique. The results show that the free corrosion potential of different portion of the X65 pipeline steel weld joint exhibited a tendency of decrease, but the corrosion density of increase, corresponding to the following order as: the weld seam, the heat affected zone and the base material. The average corrosion rate of the steel weld joints is in the range of 0.1~0.25 mm/a, the increase of the concentration of H2S and the reduction of the pH value can both lead to the increase of corrosion rate. The corrosion mode of weld seam of X65 steel is mainly the uniform corrosion in the simulated environment, and the corrosion of weld seam is slighter than that of the heat affected zone.

Key wordsX65 steel    weld joint    submarine    corrosion    H2S concentration    pH value
收稿日期: 2013-08-07     
ZTFLH:  TG172.5  
基金资助:国家科技支撑计划项目 (2011BAK06B01-01-02)资助
作者简介: null

邢云颖,女,1988年生,硕士生,研究方向为材料的腐蚀与防护

引用本文:

邢云颖, 刘智勇, 杜翠薇, 李晓刚, 刘然克, 朱敏. H2S浓度和pH值对X65海管钢焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(3): 231-236.
Yunying XING, Zhiyong LIU, Cuiwei DU, Xiaogang LI, Ranke LIU, Min ZHU. Influence of H2S Concentration and pH Value on Corrosion Behavior of Weld Joint of X65 Subsea Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2014, 34(3): 231-236.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.124      或      https://www.jcscp.org/CN/Y2014/V34/I3/231

图1  
图2  
图3  
图4  
图5  
图6  
图7  
图8  
[1] Zhou J, Chen Y F, Li X. A review of the study on the damage mechanism of corroded submarine pipeline under complex loadings[J].Ocean Eng., 2008, 26(1): 127-134
[1] (周晶, 陈严飞, 李昕等. 复杂荷载作用下海底腐蚀管线破坏机理研究进展海洋工程[J]. 海洋工程, 2008, 26(1): 127-134)
[2] Winning I G, Bretherion N, Momahon A, et al. Evaluation of weld corrosion behavior and the application of corrosion inhibitorsand combined scale, corrosion inhibitors [A]. The 59th NACE Annual Conference [C]. New Orleans, 2004: paper No. 04538
[3] Lee C M, Bond S, Woollin P. Preferential weld corrosion effects of weldment microstructure and composition [A]. The 60th NACE Annual Conference [C]. Houston, 2005: paper No.05277
[4] Liu W W, Dong Y, Liu J H. Effect of H2S concentration and temperature on the corrosion behavior of carbon steel in NACE solution[J]. J. Univ. Sci. Technol. Beijing, 2012, 34(10): 1152-1158
[4] (刘文会, 董宇, 刘建华等. 硫化氢质量浓度和温度对碳钢在NACE 溶液中腐蚀行为的影响[J]. 北京科技大学学报, 2012, 34(10): 1152-1158)
[5] Tang J W, Shao Y W, Guo J B, et al. The effect of H2S concentration on the corrosion behavior of carbon steel at 90 ℃[J]. Corros. Sci., 2010, 52(6): 2050-2058
[6] Choi Y S, Nesic S, Ling S. Effect of H2S on the CO2 corrosion of carbon steel in acidic solutions[J]. Electrochim. Acta, 2011, 56(4): 1752-1760
[7] China Society for CorrosionCorrosion Protection. Corrosion and Protection in Oil Industry[M]. Beijing: Chemical Industry Press, 2001: 16
[7] (中国腐蚀与防腐学会. 石油工业中的腐蚀与防护[M]. 北京: 化学工业出版社, 2001: 16)
[8] Huang H H, Lee J T, Tsai W T. Effect of H2S on the electrochemical behaviour of steel weld in acidic chloride solutions[J]. Mater. Chem. Phys., 1999, 58: 177-181
[9] Ma H Y, Cheng X L, Chen S H, et al. Theoretical interpretation on impedance spectra for anodic iron dissolution in acidic solutions containing hydrogen sulfide[J]. Corrosion, 1998, 54: 634-640
[10] Ma H, Cheng X, Chen S, et al. An ac impedance study of the anodic dissolution of iron in sulfuric acid solutions containing hydrogen sulfide[J]. J. Electroanal. Chem., 1998, 451: 11-17
[11] Ma H, Cheng X, Li G, et al. The influence of hydrogen sulfide on corrosion of iron under different conditions[J]. Corros. Sci., 2000, 42: 1669-1683
[12] Cheng X L, Ma H Y, Zhang J P, et al. Corrosion of iron in acid solutions with hydrogen sulfide[J]. Corrosion, 1998, 54: 369-376
[13] Liu W, Pu X L, Bai X D, et al. Development of hydrogen sulfidecorrosion and prevention[J]. Petrol. Drill. Tech., 2008, 36(l): 83-86
[13] (刘伟, 蒲晓林, 白小东等. 油田硫化氢腐蚀机理及防护的研究现状及进展[J]. 石油钻探技术, 2008, 36(l): 83-86)
[14] Zhang S J. Analysis of H2S corrosion and its countermeasures in oil pipelines[J]. Petro-Chem. Equip. Technol., 2007, 28(5): 35-38
[14] (张绍举. 石油管道硫化氢腐蚀与防护对策分析[J]. 石油化工设备技术, 2007, 28(5): 35-38)
[15] Yang H Y, Chen J J, Cao C N, et al. Study on corrosion and inhibition mechanism in H2S aqueous solutions III. Electrochemical behavior of carbon steel in the different pH solutions containing H2S[J]. J. Chin. Soc. Corros. Prot., 2000, 20(2): 97-103
[15] (杨怀玉, 陈家坚, 曹楚南等. H2S水溶液中的腐蚀与缓蚀作用机理的研究 III. 不同pH值H2S溶液中碳钢的腐蚀电化学行为[J]. 中国腐蚀与防护学报, 2000, 20(2): 97-103)
[1] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[3] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[4] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[5] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[6] 姜伯晨, 曹将栋, 曹雪玉, 王建涛, 张少朋. Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[7] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[8] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[9] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[10] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[11] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[12] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[14] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[15] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.