Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (1): 29-38    DOI: 10.11901/1005.3093.2022.261
  研究论文 本期目录 | 过刊浏览 |
γ′ 相对高钨镍基高温合金拉伸和持久变形行为的影响
韦林1, 周思耕2, 盛乃成2(), 于金江2, 侯桂臣2, 王标1, 权佳1, 周亦胄2, 孙晓峰2, 康涌1
1.中国航发四川燃气涡轮研究院 成都 610500
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Effect ofγ'-phase on Tensile and Stress Rupture Deformation Behavior of High W-containing Ni-based Superalloys
WEI Lin1, ZHOU Sigeng2, Naicheng SHENG2(), YU Jinjiang2, HOU Guichen2, WANG Biao1, QUAN Jia1, ZHOU Yizhou2, SUN Xiaofeng2, KANG Yong1
1.AECC Sichuan Gas Turbine Research Establishment, Chengdu 610500, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

韦林, 周思耕, 盛乃成, 于金江, 侯桂臣, 王标, 权佳, 周亦胄, 孙晓峰, 康涌. γ′ 相对高钨镍基高温合金拉伸和持久变形行为的影响[J]. 材料研究学报, 2023, 37(1): 29-38.
Lin WEI, Sigeng ZHOU, SHENG Naicheng, Jinjiang YU, Guichen HOU, Biao WANG, Jia QUAN, Yizhou ZHOU, Xiaofeng SUN, Yong KANG. Effect ofγ'-phase on Tensile and Stress Rupture Deformation Behavior of High W-containing Ni-based Superalloys[J]. Chinese Journal of Materials Research, 2023, 37(1): 29-38.

全文: PDF(37949 KB)   HTML
摘要: 

对K416B高钨高温合金进行固溶和时效处理以调整其中γ΄相的形貌使其具有两种尺寸,研究了铸态和热处理态合金的拉伸和持久变形行为。结果表明,铸态K416B合金中的γ΄相在基体中分布均匀,其平均尺寸为200 nm,能有效阻碍位错在基体中运动从而使其屈服强度提高。在热处理态的K416B合金中析出了两种γ΄相,其尺寸分别为1 μm和100 nm。在热处理态K416B合金的室温拉伸过程中全位错剪切大尺寸初生γ΄相和以Orowan机制绕过小尺寸二次γ΄,使其屈服强度降低。在高温下二次γ΄相更容易粗化而使γ基体的宽度增大,促进位错剪切γ΄相而使持久应变速率提高。同时,在持久变形过程中纳米级W6C颗粒在γ-γ΄相界面弥散析出消耗大量W元素降低γ-γ΄两相的错配度,使合金的强化水平下降而导致其持久寿命大幅度降低。

关键词 金属材料K416B合金γ?析出相拉伸持久位错    
Abstract

Ni-based superalloys with high W content are widely used to fabricate gas turbine blades because of their high temperature mechanical properties and lower cost. The γ΄-phase is the most important strengthening phase in Ni-based superalloys, which affects the deformation behavior during tensile process. Although the influence of γ΄-phase has been studied extensively, there are few investigations on the deformation mechanism of K416B superalloy with different morphologies of γ΄-phase. Hence, the effect of γ΄-phase morphology on the mechanical behavior of K416B superalloy was assessed in the present work. The average size of γ΄-phase scattered in the as-cast alloy was about 200 nm, which could impede the mobility of dislocations in the matrix so that the yield strength increased. After heat treatment, two sizes of γ΄-phase precipitated from the matrix, the size of them were 1 μm and 100 nm respectively. During room temperature tensile deformation of the alloy after being subjected to heat treatment, dislocations could fully share the primary γ΄-phase particles, and even detour the secondary γ΄-phase particles per Orowan mechanism, therewith the yield strength of the alloy decreased. The life of as-cast K416B is longer than that of the heat-treatment counterpart. It can be interpreted that the secondary γ΄-phase particles coarsened rapidly during the durable test. Additionally, the precipitation of nano W6C particles along the γ-γ΄ interface depleted tungsten in the alloy, which reduced the mismatch between γ and γ΄ phases, resulting in the damage of the durable life of K416B alloy.

Key wordsmetallic materials    K416B alloy    γ? precipitation    tensile behavior    duration    dislocation
收稿日期: 2022-05-07     
ZTFLH:  TG132.3+2  
基金资助:国家自然科学基金(51971214);辽宁省自然科学基金(2020-MS-014)
作者简介: 韦林,男,1989年生,本科
图1  拉伸试样和持久试样的加工示意图
图2  铸态K416B合金的OM图像
图3  铸态K416B合金的DSC曲线
图4  热处理过程
图5  铸态和热处理态K416B合金中γ?相的组织形貌
Rp0.2 /MPaRm/MPaA/%Z/%
As-cast93610544.010.0
Heat-treatment77510406.511.0
表1  K416B合金拉伸性能
图6  γ?结构不同的K416B合金的应力-应变曲线
图7  γ?结构不同的K416B合金的拉伸断口形貌
图8  γ?相形貌不同的K416B合金拉伸断裂后的SEM照片
图9  铸态K416B合金拉伸断裂后的TEM图像
图10  热处理态K416B合金的STEM-EDS图像
图11  热处理态K416B合金拉伸断裂后的TEM图像
图12  不同组织的K416B合金在975℃/235 MPa条件下的持久曲线
图13  铸态和热处理态合金在975℃/235 MPa条件下断口纵剖面的组织
图14  K416B合金在975℃/235 MPa条件下断裂后的位错组态
图15  K416B合金在975℃/235 MPa条件下蠕变断裂后的STEM明场相和对应的能谱
1 Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 19
2 Su X L, Xu Q Y, Wang R N, et al. Microstructural evolution and compositional homogenization of a low Re-bearing Ni-based single crystal superalloy during through progression of heat treatment [J]. Mater Des., 2018, 141: 296
doi: 10.1016/j.matdes.2017.12.020
3 Long H B, Mao S C, Liu Y N, et al. Microstructural and compositional design of Ni-based single crystalline superalloys―A review [J]. J. Alloys Compd., 2018, 743: 203
doi: 10.1016/j.jallcom.2018.01.224
4 Gong L, Chen B, Du Z H, et al. Investigation of solidification and segregation characteristics of cast Ni-base superalloy K417G [J]. J. Mater. Sci. Technol., 2018, 34(3): 541
doi: 10.1016/j.jmst.2016.11.009
5 Wang H F, Su H J, Zhang J, et al. Investigation on solidification path of Ni-based single crystal superalloys with different Ru contents [J]. Mater. Charact., 2017, 130: 211
doi: 10.1016/j.matchar.2017.06.017
6 MacKay R A, Gabb T P, Garg A, et al. Influence of composition on microstructural parameters of single crystal nickel-base superalloys [J]. Mater. Charact., 2012, 70: 83
doi: 10.1016/j.matchar.2012.05.001
7 Xie J, Yu J J, Sun X F, et al. Carbide evolution behavior of K416B as-cast Ni-based superalloy with high W content during high temperature creep [J]. Acta Metall. Sin., 2015, 51(4): 458
doi: 10.11900/0412.1961.2014.00543
7 谢 君, 于金江, 孙晓峰 等. 高钨K416B铸造镍基合金高温蠕变期间碳化物演化行为 [J]. 金属学报, 2015, 51(4): 458
8 Zhou T J, Feng W, Zhao H B, et al. Coupling effects of tungsten and molybdenum on microstructure and stress-rupture properties of a nickel-base cast superalloy [J]. Prog. Nat. Sci.: Mater. Int., 2018, 28: 45
doi: 10.1016/j.pnsc.2017.12.003
9 Roebuck B, Cox D, Reed R. The temperature dependence of γ′ volume fraction in a Ni-based single crystal superalloy from resistivity measurements [J]. Scripta Mater., 2001, 44: 917
doi: 10.1016/S1359-6462(00)00662-X
10 Harte A, Atkinson M, Smith A, et al. The effect of solid solution and gamma prime on the deformation modes in Ni-based superalloys [J]. Acta Mater., 2020, 194: 257
doi: 10.1016/j.actamat.2020.04.004
11 Wang X G, Liu J L, Jin T, et al. Tensile behaviors and deformation mechanisms of a nickel-base single crystal superalloy at different temperatures [J]. Mater. Sci. Eng., 2014, 598A: 154
12 Cui L Q, Su H H, Yu J J, et al. Temperature dependence of tensile properties and deformation behaviors of nickel-base superalloy M951G [J]. Mater. Sci. Eng., 2017, 696A: 323
13 Zhou T J, Ding H S, Ma X P, et al. Effect of precipitates on high-temperature tensile strength of a high W-content cast Ni-based superalloy [J]. J. Alloys Compd., 2019, 797: 486
doi: 10.1016/j.jallcom.2019.05.085
14 Xie J, Yu J J, Sun X F, et al. Thermodynamics analysis and precipitation behavior of fine carbide in K416B Ni-based superalloy with high W content during creep [J]. Trans. Nonferrous Met. Soc. China, 2015, 25(5): 1478
doi: 10.1016/S1003-6326(15)63748-7
15 Cormier J, Cailletaud G. Constitutive modeling of the creep behavior of single crystal superalloys under non-isothermal conditions inducing phase transformations [J]. Mater. Sci. Eng., 2010, 527A(23) : 6300
16 Guo X T, Zheng W W, An W R, et al. High temperature creep behavior of a cast polycrystalline nickel-based superalloy K465 under thermal cycling conditions [J]. Materialia, 2020, 14: 100913
doi: 10.1016/j.mtla.2020.100913
17 Li Q, Xie J, Yu J J, et al. Solidification behavior and segregation characteristics of high W-content cast Ni-Based superalloy K416B [J]. J. Alloys Compd., 2021, 854: 156027
doi: 10.1016/j.jallcom.2020.156027
18 Hua H Y, Xie J, Shu D L, et al. Influence of W content on the microstructure of nickel base superalloy with high W content [J]. Acta Metall. Sin., 2020, 56(2): 161
doi: 10.11900/0412.1961.2019.00193
18 华涵钰, 谢 君, 舒德龙 等. W含量对一种高W镍基高温合金显微组织的影响 [J]. 金属学报, 2020, 56(2): 161
doi: 10.11900/0412.1961.2019.00193
19 Xie J, Yu J J, Sun X F, et al. Influence of temperature on tensile behaviors of K416B Ni-based superalloy with high W content [J]. Acta Metall. Sin., 2015, 51(8): 943
19 谢 君, 于金江, 孙晓峰等 温度对高W含量K 416 B镍基合金拉伸行为的影响 [J]. 金属学报, 2015, 51(8): 943
20 Chen M K, Xie J, Shu D L, et al. Effect of long-term thermal exposures on tensile behaviors of K416B nickel-based superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33(12): 1699
doi: 10.1007/s40195-020-01075-3
21 Zhou S G, Sheng N C, Sun S J, et al. Microstructural evolution of a high W content Ni-based superalloy at γ' sub-solvus temperatures [J]. Met. Mater Int., 2023, 29: 27
doi: 10.1007/s12540-022-01216-6
22 Singh A R P, Nag S, Chattopadhyay S, et al. Mechanisms related to different generations of γ' precipitation during continuous cooling of a nickel base superalloy [J]. Acta Mater., 2013, 61(1): 280
doi: 10.1016/j.actamat.2012.09.058
23 Du B N, Hu Z Y, Sheng L Y, et al. Tensile, creep behavior and microstructure evolution of an as-cast Ni-based K417G polycrystalline superalloy [J]. J. Mater. Sci. Technol., 2018, 34(10): 1805
doi: 10.1016/j.jmst.2018.02.007
24 Qin S Y, Hao J Q, Yan L G, et al. Ultrafast solution treatment to improve the comprehensive mechanical properties of superalloy by pulsed electric current [J]. Scripta Mater., 2021, 199: 113879
doi: 10.1016/j.scriptamat.2021.113879
25 Raynor D, Silcock J M. Strengthening mechanisms in γ' precipitating alloys [J]. Met. Sci. J., 1970, 4: 121
doi: 10.1007/BF00550653
26 Xia W S, Zhao X B, Yue Q Z, et al. Formative and controlled mechanisms of nano-sized γ′ precipitates with local phase-transition within dislocation networks of nickel-based single crystal superalloys [J]. Acta Mater., 2021, 206: 116653
doi: 10.1016/j.actamat.2021.116653
27 Kontis P, Li Z M, Collins D M, et al. The effect of chromium and cobalt segregation at dislocations on nickel-based superalloys [J]. Scripta Mater., 2018, 145: 76
doi: 10.1016/j.scriptamat.2017.10.005
28 Xie J, Tian S G, Zhou X M, et al. Influence of heat treatment regimes on microstructure and creep properties of FGH95 nickel base superalloy [J]. Mater. Sci. Eng., 2012, 538A: 306
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.