Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (1): 39-46    DOI: 10.11901/1005.3093.2021.619
  研究论文 本期目录 | 过刊浏览 |
莫来石粉末化学镀镍和涂层的高温摩擦学性能
陈开旺1,2, 张鹏林1,2(), 李树旺1,2, 牛显明2, 胡春莲2
1.兰州理工大学 有色金属先进加工与再利用国家重点实验室 兰州 730050
2.兰州理工大学材料科学与工程学院 兰州 730050
High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders
CHEN Kaiwang1,2, ZHANG Penglin1,2(), LI Shuwang1,2, NIU Xianming2, HU Chunlian2
1.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2.School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
引用本文:

陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
Kaiwang CHEN, Penglin ZHANG, Shuwang LI, Xianming NIU, Chunlian HU. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. Chinese Journal of Materials Research, 2023, 37(1): 39-46.

全文: PDF(8467 KB)   HTML
摘要: 

先进行正交试验优化镀液的工艺参数,然后用化学镀对莫来石粉末进行表面包覆并对包覆粉末进行850℃热处理,用等离子喷涂技术在304不锈钢表面分别制备莫来石涂层和包覆粉末涂层。用附带能谱的扫描电镜(SEM)和X射线衍射仪(XRD)表征了包覆粉末和涂层的微观结构,用HV-1000维氏显微硬度仪测试了涂层硬度,用HT-1000摩擦实验机测试了800℃时涂层的摩擦磨损性能。结果表明:镀液的优化工艺参数为:硫酸镍20 g/L,次磷酸钠 30 g/L,柠檬酸钠 20 g/L,氯化铵 20 g/L,pH=5.5,水浴温度80℃,施镀时间1 h。在莫来石粉末表面包覆的Ni-P镀层均匀致密,热处理使包覆镀层由非晶态向晶态转变,生成了Ni和Ni3P相。莫来石涂层主要由莫来石相和γ-Al2O3相组成,包覆粉末涂层主要由Ni、AlNi3、Ni3P和莫来石相组成。在包覆粉末涂层中引入Ni-P镀层使涂层的硬度由417.5 HV0.2提高到500.1 HV0.2。包覆粉末涂层的耐磨性优于莫来石涂层,包覆粉末涂层的摩擦系数比莫来石涂层明显减小,包覆粉末涂层的磨损率为13×10-4 mm3/(N·m),是莫来石涂层的0.59倍。磨损后莫来石涂层的表面有明显的梨沟和涂层剥落,而包覆粉末涂层的表面光滑,涂层剥落较少。两组涂层的磨损形式,主要为塑性变形和磨粒磨损。

关键词 材料表面与界面摩擦磨损化学镀莫来石Ni-P合金正交试验    
Abstract

Firstly, mullite powders were Ni-P plated by electroless plating, and next, subjected to a heat treatment at 850℃. Then coatings of blank- and Ni-P plated-mullite powders were plasma sprayed on 304 stainless steel, respectively. The friction and wear properties of the coatings at 800℃ were tested by a tribometer. The Ni-P plated powders and the plasma spraying coatings were characterized by means of SEM, XRD and Vickers microhardness tester. The results show that the optimized process parameters for electroless plating were as follows: the bath with pH 5.5 composed of NiSO4·6H2O 20 g/L, NaH2PO2·H2O 30 g/L, Na3C6H5O7·2H2O 20 g/L and NH4Cl 20 g/L, the plating was conducted at 80℃for 1 h. The plated Ni-P layer on the surface of mullite powder was uniform and compact, and the heat treatment made the layer change from amorphous to crystalline consisted of Ni and Ni3P. The sprayed mullite coating was mainly composed of mullite phase and γ-Al2O3 phase, and the sprayed coating of Ni-P plated powders was mainly composed of Ni, AlNi3, Ni3P and mullite. The introduction of Ni-P plating for mullite powders could enhance the hardness of the sprayed coating from 417.5 HV0.2 to 500.1 HV0.2. The sprayed coating of Ni-P mullite powders presented a good wear resistance superior to that of the blank ones. Correspondingly, the Ni-P plated powder coating has significantly lower friction coefficient with a wear rate of 13×10-4mm3/(N·m), which was only 0.59 times of that for the mullite coating. After wear test, obvious ploughs and local spallations could be observed on the surface of mullite coating, while the surface of the Ni-P plated powder coating was smooth with less spallation. Besides, the wear forms of the two coatings were mainly plastic deformation and abrasive wear.

Key wordssurface and interface in the materials    friction and wear    electroless plating    mullite    Ni-P alloy    orthogonal experiment
收稿日期: 2021-11-02     
ZTFLH:  TB331  
基金资助:甘肃省高等学校科研项目(2017D-02)
作者简介: 陈开旺,男,1996年生,硕士生
LevelNickel sulfate, A/g·L-1Sodium hypophosphite, B/g·L-1Temperature, C/℃pH, D
11510404.5
22020605
32530805.5
表1  因素水平设计表
图1  喷涂粉末的形貌
ItemsNiCrAlY coatingMullite coating
Arc current/A600500
Voltage/V6070
Argon gas flow rate/L·min-14045
Hydrogen gas flow rate/L·min-11515
Powder gas flow rate/L·min-158
Spray distance/mm9090
Spray angle/(°)9090
Gun speed/m·s-10.30.2
表2  大气等离子喷涂参数
图2  球盘式摩擦磨损实验机的原理图
NumberABCDm
111110.0374
212220.1052
313330.1828
421230.2308
522310.3364
623120.2831
731320.1314
832130.2714
933210.3024
K10.32540.39960.59190.6762
K20.85030.71300.63840.5197
K30.70520.76830.65060.6850
R0.52490.36870.05870.1653
表3  正交表和正交试验结果
图3  包覆粉末形貌和能谱
图4  粉末的XRD衍射谱
图5  涂层的表面形貌
图6  涂层的XRD衍射谱
图7  800℃时涂层的摩擦系数与摩擦时间的关系
图8  涂层的三维磨痕轮廓
图9  涂层硬度和磨损率
图10  涂层磨痕的形貌
1 Huang Y, Li S C, Xiao G J, et al. Research progress of aero-engine blade materials and anti-fatigue grinding technology [J]. J. Aeron. Mater, 2021, 41(4): 17
1 黄 云, 李少川, 肖贵坚 等. 航空发动机叶片材料及抗疲劳磨削技术现状 [J]. 航空材料学报, 2021, 41(4):17
2 He Q, Huang W F, Hu G Y, et al. Research status of the silm-riding gas seal technologies in aeroengine [J]. Aeroengine, 2021, 47(4): 106
2 何 强, 黄伟峰, 胡广阳 等. 航空发动机气膜密封技术的发展 [J]. 航空发动机, 2021, 47(4): 106
3 Zhong B, Guo H Y, Wei J T, et al. Experimental investigation on integrated cooling efficiency of turbine blade [J]. J. Propul. Techno, 2021, 42(2): 335
3 钟 博, 郭昊雁, 魏景涛 等. 涡轮叶片综合冷却效率实验研究 [J]. 推进技术, 2021, 42(2): 335
4 Cheng T T, Wang Z P, Dai S J, et al. Research progress of ceramic-based cigh cemperature cealing coating for ceroengines [J]. J. Mech. Eng, 2021, 57(10): 126
4 程涛涛, 王志平, 戴士杰 等. 航空发动机陶瓷基高温封严涂层研究进展 [J]. 机械工程学报, 2021, 57(10): 126
doi: 10.3901/JME.2021.10.126
5 Ding K Y, Cheng T T, Han Z Y. Formation and properties of porous ZrO2-8%Y2O3 coatings [J]. Rare. Metal. Mat. Eng, 2018, 47(6): 1677
doi: 10.1016/S1875-5372(18)30149-8
6 Li S J, Zhao X Q, Hou G L, et al. Thermomechanical properties and thermal cycle resistance of plasma-sprayed mullite coating and mullite/zirconia composite coatings [J]. Ceram. Int, 2016, 42(15): 17447
doi: 10.1016/j.ceramint.2016.08.049
7 Jin Z A, Zhu L N, Liu M, et al. Research status of aluminum coating prepared by thermal spraying technology and its corrosion resistance in 3.5% NaCl solution [J]. Surf. Tech, 2019, 48(10): 220
7 靳子昂, 朱丽娜, 刘 明 等. 热喷涂技术制备铝涂层及其在3.5%NaCl溶液中耐腐蚀性的研究现状 [J]. 表面技术, 2019, 48(10): 220
8 Xue W H, Gao S Y, Duan D L, et al. Effects of blade material characteristics on the high-speed rubbing behavior between Al-hBN abradable seal coatings and blades [J]. Wear, 2018, 410-411: 25
doi: 10.1016/j.wear.2018.06.003
9 Ding K Y, Yu J H, Gao Y. Abradable properties of porous YSZ coatings [J]. Trans. China. Weld. Inst, 2017, 38(1): 56
9 丁坤英, 于建海, 高 元. 多孔YSZ涂层的制备和可磨耗性 [J]. 焊接学报, 2017, 38(1): 56
10 Wang Z, Du L Z, Lan H, et al. Preparation and characterization of YSZ abradable sealing coating through mixed solution precursor plasma spraying [J]. Ceram. Int, 2019, 45(9): 11802
doi: 10.1016/j.ceramint.2019.03.058
11 Cao L Y, Liu J T, Huang J F, et al. Mullite whisker toughened mullite coating to enhance the thermal shock resistance of SiC pre-coated carbon/carbon composites [J]. Ceram. Int, 2017, 43(18): 16512
doi: 10.1016/j.ceramint.2017.09.035
12 Han B Y, Du W, Zhu S, et al. Study on system and properties of typical wear-resisting coating materials by plasma spraying [J]. Surf. Tech, 2021, 50(4):159
12 韩冰源, 杜 伟, 朱 胜 等. 等离子喷涂典型耐磨涂层材料体系与性能现状研究 [J]. 表面技术, 2021, 50(4): 159
13 Wang H, Jia J F, Song H Z, et al. The preparation of Cu-coated Al2O3 composite powders by electroless plating [J]. Ceram. Int, 2011, 37(7): 2181
doi: 10.1016/j.ceramint.2011.03.013
14 Jiang Z J, Liu C Y, Liu Y. The reduction reaction of silver ions on the surface of silica [J]. Photographic. Sci. Photoch, 2003, (3): 169
14 蒋仲杰, 刘春艳, 刘 云. 银离子在二氧化硅粒子表面上的成核反应 [J]. 感光科学与光化学, 2003, (3): 169
15 Gui B H, Zhou H, Zheng J, et al. Microstructure and properties of TiAlCrN ceramic coatings deposited by hybrid HiPIMS/DC magnetron co-sputtering [J]. Ceram. Int, 2021, 47(6): 8175
doi: 10.1016/j.ceramint.2020.11.175
16 Schneider H, Schreuer J, Hildmann B. Structure and properties of mullite—A review [J]. J. Eur. Ceram. Soc, 2008, 28(2): 329
doi: 10.1016/j.jeurceramsoc.2007.03.017
17 Li S J, Xi X, Hou G L, et al. Preparation of plasma sprayed mullite coating on stainless steel substrate and investigation of its environmental dependence of friction and wear behavior [J]. Tribol. Int, 2015, 91: 32
doi: 10.1016/j.triboint.2015.06.022
18 Cao Y, Zhang P L, Niu X M, et al. Research on heat insulation and thermal shock properties of NiCr-mullite composite ceramic coating [J]. P/M Technol, 2021, 39(2): 135
18 曹 洋, 张鹏林, 牛显明 等. 镍铬-莫来石复合陶瓷涂层热障及抗热震性能的研究 [J]. 粉末冶金技术, 2021, 39(2): 135
19 Hou P J, Huang G P, Wang H G, et al. Mullite/metal composite thermal barrier coating deposited by micro-plasma spraying [J]. Trans. China. Weld. Inst, 2009, 30(05): 85
19 候平均, 黄国鹏, 王汉功 等. 微弧等离子喷涂制备莫来石/金属复合热障涂层 [J]. 焊接学报, 2009, 30(05): 85
20 Chen K W, Zhang P L, Sun P F, et al. Electroless Ni-P plating on mullite powders and study of the mechanical properties of its plasma-sprayed coating [J]. Coatings, 2022, 12(1): 18
doi: 10.3390/coatings12010018
21 Sahoo P. Wear behaviour of electroless Ni-P coatings and optimization of process parameters using Taguchi method [J]. Mater. Design, 2009, 30(4): 1341
doi: 10.1016/j.matdes.2008.06.031
22 Zhang Y B, Zong Y P, Cao X J, et al. Effects of chemical Ni plating of reinforcing particles on properties of SiCp/Fe composite [J]. Chin. J. Mater. Res, 2012, 26(5): 483
22 张跃波, 宗亚平, 曹新建 等. 碳化硅颗粒化学镀镍对铁基复合材料性能的影响 [J]. 材料研究学报, 2012, 26(5): 483
23 Bao Y W, Fan J H, Zhu S G. Electroless plating nickel on T10A steel [J]. Chin. Surf. Eng, 2013, 26(6): 63
23 包雨威, 范金辉, 朱世根. 针织器材用T10A钢表面化学镀镍工艺 [J]. 中国表面工程, 2013, 26(6): 63
24 Ma Y C, Jia S Y, Zeng X G, et al. Optimization process for electroless composite plating of Ni-P-Cu-PTFE by orthogonal test [J]. Plating & Finishing, 2020, 42(12): 15
24 马永纯, 贾树勇, 曾宪光 等. 正交试验法优化Ni-P-Cu-PTFE复合化学镀工艺 [J]. 电镀与精饰, 2020, 42(12): 15
25 Zhao D, Yang L G, Xu X Z. Deposition behavior and mechanism of electroless plating Ni-Zn-P alloy coating on low-carbon steel surface [J]. Surf. Tech, 2016, 45(01): 69
25 赵 丹, 杨立根, 徐旭仲 等. 低碳钢表面化学镀Ni-Zn-P合金镀层的沉积行为及沉积机理 [J]. 表面技术, 2016, 45(01): 69
26 Hu J X. Fabrication of electroless copper-plated composites by dopamine surface functionalization [D]. Guangzhou: South China University of Technology, 2016
26 胡佳勋. 多巴胺修饰制备表面化学镀铜复合材料的研究 [D]. 广州: 华南理工大学, 2016
27 Hu W B, Liu L, Wu Y T. Electroless Nickel Plating on Refractory Substrate [M]. Beijing: Chemical Industry Press, 2003
27 胡文彬, 刘 磊, 仵亚婷. 难镀基材的化学镀镍技术 [M]. 北京: 化学工业出版社, 2003
28 Jin S W, Kang M, Shao Y, et al. Crystallization process of heat-treated amorphous Ni-P alloy coating [J]. J. Mater. Eng, 2016, 44(9): 115
28 金世伟, 康 敏, 邵 越 等. 热处理非晶态Ni-P合金镀层的晶化过程 [J]. 材料工程, 2016, 44(9): 115
29 An Y L, Chen J M, Zhou H D, et al. Microstructure and thermal cycle resistance of plasma sprayed mullite coatings made from secondary mullitized natural andalusite powder [J]. Surf. Coat. Tech, 2010, 205(7): 1897
doi: 10.1016/j.surfcoat.2010.08.072
30 Hou B Q, Guo H X, Zhu Y X, et al. Effects of mullite contents and particle size on tribological properties of copper-iron matrix composites [J]. B. Chin. Ceram. Soc, 2020, 48(6): 794
30 侯宝强, 郭海霞, 朱宇璇 等. 莫来石含量及粒径对铜铁基复合材料摩擦学性能的影响 [J]. 硅酸盐通报, 2020, 48(6): 794
31 Shi G J, Li C, Yuan Y. Polytetrafluoroethylene matrix composites synergistically filled with mullite and carbon fiber and its tribological performances [J]. Acta. Mater. Compos. Sin, 2016, 33(9): 1886
31 石国军, 李 翠, 袁 月. 莫来石与碳纤维协同填充的聚四氟乙烯基复合材料及其摩擦学性能 [J]. 复合材料学报, 2016, 33(9): 1886
32 Fan X J, Li W S, Yang J, et al. Effect of loads on tribological behaviors of Ni3Al matrix self-lubricating composite coating [J]. Tribology, 2019, 39(4): 418
32 范祥娟, 李文生, 杨 军 等. 载荷对Ni3Al基自润滑复合涂层摩擦学行为的影响 [J]. 摩擦学学报, 2019, 39(4): 418
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[5] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[12] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[13] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[14] 王振生, 谢威, 彭真, 贺颖茜, 曾阳根. K417G合金的环境致脆磨损机理[J]. 材料研究学报, 2021, 35(7): 501-509.
[15] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.