Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (9): 699-705    DOI: 10.11901/1005.3093.2021.200
  研究论文 本期目录 | 过刊浏览 |
锆合金表面Cr基涂层的耐高温氧化性能
单位摇1,2, 王永利1(), 李静1, 熊良银1, 杜晓明3, 刘实1
1.中国科学院金属研究所 师昌绪先进材料创新中心 特种合金研究部 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
3.沈阳理工大学材料科学与工程学院 沈阳 110159
High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy
SHAN Weiyao1,2, WANG Yongli1(), LI Jing1, XIONG Liangyin1, DU Xiaoming3, LIU Shi1
1.Special Alloy Research Department, Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
引用本文:

单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
Weiyao SHAN, Yongli WANG, Jing LI, Liangyin XIONG, Xiaoming DU, Shi LIU. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. Chinese Journal of Materials Research, 2022, 36(9): 699-705.

全文: PDF(9141 KB)   HTML
摘要: 

用磁控溅射法在锆合金基体表面制备Cr和CrAl层,并使其在1200℃/1 h水蒸汽中氧化,用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)等手段表征氧化前后涂层和Zr合金基体的微观结构,研究了两种涂层在(反应堆失水(LOCA)事故情况下的)高温蒸汽环境中的抗氧化性能。结果表明:在1200℃/1 h水蒸汽中氧化后没有涂层的锆合金基体表面生成厚度约为100 μm的氧化膜;而在Cr涂层表面生成的致密Cr2O3层其厚度约为4 μm,表明氧化速率显著降低。CrAl涂层氧化后表面生成致密的Cr2O3和Al2O3混合氧化层,其厚度只有0.8 μm,表明氧化速率进一步降低。这些结果表明: 用磁控溅射法在锆合金表面制备的Cr和CrAl涂层,在1200℃水蒸气环境中均表现出良好的耐氧化性能。在Cr涂层表面生成的氧化膜厚度约为未涂层锆合金氧化层的1/25,CrAl涂层氧化膜厚度低于锆合金表面氧化层的1/100。

关键词 材料表面与界面事故耐受燃料磁控溅射Cr涂层CrAl涂层耐高温蒸汽氧化性能    
Abstract

Coatings of Cr and CrAl (14% Al, mass fraction) were prepared on Zr-4 alloy substrate by magnetron sputtering method. The oxidation resistance of Cr and CrAl coatings in high temperature steam (simulated the situation of LOCA accident) was investigated by means of steam oxidation test at 1200℃ for 1 h, scanning electron microscope (SEM), energy dispersive spectroscope (EDS) and X-ray diffractometer (XRD). The results show that the thickness of oxide scaled formed on the uncoated Zr-4 alloy is about 100 μm after steam oxidation at 1200℃/1 h, while a dense Cr2O3 scale of about 4 μm in thickness formed on the Cr coating surface, and the oxidation rate decreases significantly. The oxidation rate of CrAl coating is even lower than that of Cr coating due to the formation of a dense scale of mixed oxides Cr2O3 and Al2O3 of about 0.8 μm in thickness. It can be concluded that Cr and CrAl coatings prepared by magnetron sputtering on Zr-4 alloy have good resistance to high temperature steam oxidation at 1200℃. The thickness of the oxide scale formed on the surface of Cr coating is about 1/25 of that on Zr-4 alloy, and the thickness of the oxide scale on the surface of CrAl coating is less than 1/100 of that on Zr-4 alloy.

Key wordssurface and interface in the materials    accident tolerant fuel    magnetron sputtering    Cr coating    CrAl coating    high temperature steam oxidation resistance
收稿日期: 2021-03-24     
ZTFLH:  TG174.2+1  
基金资助:沈阳市科技计划(Y17-0-022)
作者简介: 单位摇,女,1996年生,硕士
CompositionSnFeCrZr
Content1.50.20.1Bal.
表 1  基体Zr-4合金的成分
图1  衬底温度不同的Cr膜的表面和截面形貌
图2  Cr涂层的XRD谱
图3  衬底温度不同的CrAl涂层的SEM照片
图4  CrAl涂层的XRD谱
图5  用磁控溅射法制备的CrAl膜层的成分
图6  在1200℃水蒸汽中氧化1h后Cr和CrAl涂层的表面和截面形貌
图7  在1200℃水蒸汽中氧化1 h后Cr和CrAl涂层的XRD谱
1 Kim H G, Kim I H, Jung Y I, et al. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating [J]. J. Nucl. Mater., 2015, 465: 531
doi: 10.1016/j.jnucmat.2015.06.030
2 Hallstadius L, Johnson S, Lahoda E. Cladding for high performance fuel [J]. Prog. Nucl. Energy, 2012, 57: 71
doi: 10.1016/j.pnucene.2011.10.008
3 Ott L J, Robb K R, Wang D. Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions [J]. J. Nucl. Mater., 2014, 448: 520
doi: 10.1016/j.jnucmat.2013.09.052
4 Ševeček M, Gurgen A, Phillips B, et al. Cold spray Cr-coated fuel cladding with enhanced accident tolerance [A]. 2017 Water Reactor Fuel Performance Meeting [C]. Jeju Island, Korea: WRFPM, 2017
5 Park J H, Kim H G, Park J Y, et al. High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings [J]. Surf. Coat. Technol., 2015, 280: 256
doi: 10.1016/j.surfcoat.2015.09.022
6 Brachet J C, Saux M L, Flem M L, et al. On-going studies at CEA on chromium coated zirconium based nuclear fuel claddings for enhanced accident tolerant LWRs fuel [A]. TopFuel 2015 [C]. Zurich, Switzerland, 2015
7 Ribis J, Wu A, Brachet J C, et al. Atomic-scale interface structure of a Cr-coated Zircaloy-4 material [J]. J. Mater. Sci., 2018, 53: 9879
doi: 10.1007/s10853-018-2333-1
8 Bischoff J, Delafoy C, Vauglin C, et al. AREVA NP's enhanced accident-tolerant fuel developments: Focus on Cr-coated M5 cladding [J]. Nucl. Eng. Technol., 2018, 50: 223
doi: 10.1016/j.net.2017.12.004
9 Wagih M, Spencer B, Hales J, et al. Fuel performance of chromium-coated zirconium alloy and silicon carbide accident tolerant fuel claddings [J]. Ann. Nucl. Energy, 2018, 120: 304
doi: 10.1016/j.anucene.2018.06.001
10 Zhong W C, Mouche P A, Heuser B J. Response of Cr and Cr-Al coatings on Zircaloy-2 to high temperature steam [J]. J. Nucl. Mater., 2018, 498: 137
doi: 10.1016/j.jnucmat.2017.10.021
11 Idarraga-Trujillo I, Flem M L, Brachet J C, et al. Assessment at CEA of coated nuclear fuel cladding for LWRs with increasing margins in LOCA and beyond LOCA conditions [A]. TopFuel 2013 [C]. Charlotte, NC, USA, 2013
12 Wu Y W, He X J, Zhang J L, et al. CrAl-based high-temperature coatings on zirconium alloy and oxidation behavior [J]. Surf. Technol., 2018, 47(9): 34
12 吴亚文, 贺秀杰, 张继龙 等. 锆合金表面CrAl基耐高温涂层及氧化行为研究 [J]. 表面技术, 2018, 47(9): 34
13 Kim H G, Kim I H, Jung Y I, et al. Out-of-pile performance of surface-modified Zr cladding for accident tolerant fuel in LWRs [J]. J. Nucl. Mater., 2018, 510: 93
doi: 10.1016/j.jnucmat.2018.07.061
14 Zhong W C, Mouche P A, Han X C, et al. Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions [J]. J. Nucl. Mater., 2016, 470: 327
doi: 10.1016/j.jnucmat.2015.11.037
15 Park D, Mouche P A, Zhong W C, et al. TEM/STEM study of Zircaloy-2 with protective FeAl(Cr) layers under simulated BWR environment and high-temperature steam exposure [J]. J. Nucl. Mater., 2018, 502: 95
doi: 10.1016/j.jnucmat.2018.01.055
16 Wu X, Kozlowski T, Hales J D. Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions [J]. Ann. Nucl. Energy, 2015, 85: 763
doi: 10.1016/j.anucene.2015.06.032
17 Wang Z Y, Liu J Z, Wang L, et al. Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique [J]. Appl. Surf. Sci., 2017, 396: 1435
doi: 10.1016/j.apsusc.2016.11.183
18 Feng Z J, Ke P L, Huang Q, et al. The scaling behavior and mechanism of Ti2AlC MAX phase coatings in air and pure water vapor [J]. Surf. Coat. Technol., 2015, 272: 380
doi: 10.1016/j.surfcoat.2015.03.037
19 Gutzmann H, Gärtner F, Höche D, et al. Cold spraying of Ti2AlC MAX-phase coatings [J]. J. Therm. Spray Technol., 2013, 22: 406
doi: 10.1007/s11666-012-9843-1
20 Alat E, Motta A T, Comstock R J, et al. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding [J]. J. Nucl. Mater., 2016, 478: 236
doi: 10.1016/j.jnucmat.2016.05.021
21 Daub K, Van Nieuwenhove R, Nordin H. Investigation of the impact of coatings on corrosion and hydrogen uptake of Zircaloy-4 [J]. J. Nucl. Mater., 2015, 467: 260
doi: 10.1016/j.jnucmat.2015.09.041
22 Liu Y, Bhamji I, Withers P J, et al. Evaluation of the interfacial shear strength and residual stress of TiAlN coating on ZIRLO™ fuel cladding using a modified shear-lag model approach [J]. J. Nucl. Mater., 2015, 466: 718
doi: 10.1016/j.jnucmat.2015.06.003
23 Mo J L, Zhu M H, Lei B, et al. Comparison of tribological behaviours of AlCrN and TiAlN coatings—Deposited by physical vapor deposition [J]. Wear, 2007, 263: 1423
doi: 10.1016/j.wear.2007.01.051
24 Park J W, Kim J U, Park J Y. Ion beam mixed oxidation protective coating on Zry-4 cladding [J]. Nucl. Instrum. Methods Phys. Res. Sect. B, 2016, 377: 12
doi: 10.1016/j.nimb.2016.04.001
25 Bao W C, Xue J X, Liu J X, et al. Coating SiC on Zircaloy-4 by magnetron sputtering at room temperature [J]. J. Alloys Compd., 2018, 730: 81
doi: 10.1016/j.jallcom.2017.09.281
26 Rai A K, Srinivasulu B, Paul C P, et al. Development of thick SiC coating on thin wall tube of Zircaloy-4 using laser based directed energy deposition technique [J]. Surf. Coat. Technol., 2020, 398: 1
27 Meng F P, Wang B, Ge F F, et al. Microstructure and mechanical properties of Ni-alloyed SiC coatings [J]. Surf. Coat. Technol., 2012, 213: 77
doi: 10.1016/j.surfcoat.2012.10.020
28 Usui T, Sawada A, Amaya M, et al. SiC coating as hydrogen permeation reduction and oxidation resistance for nuclear fuel cladding [J]. J. Nucl. Sci. Technol., 2015, 52: 1
29 Malinovschi V, Marin A, Negrea D, et al. Characterization of Al2O3/ZrO2 composite coatings deposited on Zr-2.5Nb alloy by plasma electrolytic oxidation [J]. Appl. Surf. Sci., 2018, 451: 169
doi: 10.1016/j.apsusc.2018.04.207
30 Wang Y, Tang H, Han X C, et al. Oxidation resistance improvement of Zr-4 alloy in 1000℃ steam environment using ZrO2/FeCrAl bilayer coating [J]. Surf. Coat. Technol., 2018, 349: 807
doi: 10.1016/j.surfcoat.2018.05.005
31 Tang C C, Stueber M, Seifert H J, et al. Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings [J]. Corros. Rev, 2017, 35: 141
doi: 10.1515/corrrev-2017-0010
32 Kim H G, Kim I H, Jung Y I, et al. High-temperature oxidation behavior of Cr-coated zirconium alloy [A]. TopFuel 2013 [C]. Charlotte, North Carolina, 2013
33 Maier B, Yeom H, Johnson G, et al. Development of cold spray coatings for accident-tolerant fuel cladding in light water reactors [J]. JOM, 2018, 70: 198
doi: 10.1007/s11837-017-2643-9
34 Park D J, Kim H G, Jung Y I, et al. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions [J]. J. Nucl. Mater., 2016, 482: 75
doi: 10.1016/j.jnucmat.2016.10.021
35 Wang X J, Liu Y H, Feng S, et al. Synthesis and property characterization of magnetron sputtered SiC/Cr coatings on Zr-based alloy [J]. Chin. J. Vac. Sci. Technol., 2018, 38: 332
35 王晓婧, 刘艳红, 冯 硕 等. 锆合金表面磁控溅射制备SiC/Cr复合涂层的研究 [J]. 真空科学与技术学报, 2018, 38: 332
36 Wang Y D, Zhou W C, Wen Q L, et al. Behavior of plasma sprayed Cr coatings and FeCrAl coatings on Zr fuel cladding under loss-of-coolant accident conditions [J]. Surf. Coat. Technol., 2018, 344: 141
doi: 10.1016/j.surfcoat.2018.03.016
37 Hu X G, Dong C, Wang Q, et al. High-temperature oxidation of thick Cr coating prepared by arc deposition for accident tolerant fuel claddings [J]. J. Nucl. Mater., 2019, 519: 145
doi: 10.1016/j.jnucmat.2019.01.039
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[7] 张鹏, 黄东, 张福全, 叶崇, 伍孝, 吴晃. 中间相沥青基碳纤维石墨化度对Cf/Al界面损伤的影响[J]. 材料研究学报, 2022, 36(8): 579-590.
[8] 孟祥东, 甄超, 刘岗, 成会明. CuO纳米阵列结构光阴极的制备及其光电化学分解水的性能[J]. 材料研究学报, 2022, 36(4): 241-249.
[9] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[10] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[11] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[12] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[13] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[14] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[15] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.