Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (8): 575-583    DOI: 10.11901/1005.3093.2020.047
  研究论文 本期目录 | 过刊浏览 |
硅橡胶表面壳聚糖载铜凝胶涂层的制备及其抗菌功能
王立蓉1, 关宏宇1(), 陈姗姗2(), 张炳春2, 杨柯2
1 辽宁大学化学系 沈阳 110036
2 中国科学院金属研究所 沈阳 110016
Preparation and Antibacterial Function of an Cu-bearing Chitosan Coating on Silicone Rubber Surface
WANG Lirong1, GUAN Hongyu1(), CHEN Shanshan2(), ZHANG Bingchun2, YANG Ke2
1 Department of Chemistry, Liaoning University, Shenyang 110036, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

王立蓉, 关宏宇, 陈姗姗, 张炳春, 杨柯. 硅橡胶表面壳聚糖载铜凝胶涂层的制备及其抗菌功能[J]. 材料研究学报, 2020, 34(8): 575-583.
Lirong WANG, Hongyu GUAN, Shanshan CHEN, Bingchun ZHANG, Ke YANG. Preparation and Antibacterial Function of an Cu-bearing Chitosan Coating on Silicone Rubber Surface[J]. Chinese Journal of Materials Research, 2020, 34(8): 575-583.

全文: PDF(8022 KB)   HTML
摘要: 

在硅橡胶表面制备一种具有抗感染功能的涂层—壳聚糖载铜凝胶涂层。为了克服硅橡胶的生物惰性,在其表面制备涂层,先用逐步化学接枝法对其表面进行活化预处理,然后化学接枝壳聚糖载铜凝胶涂层。对比浸泡前后涂层的形貌,研究了活化预处理对功能化涂层与硅橡胶基体之间结合性能的影响。结果表明,用化学接枝法可在硅橡胶表面生成丰富的活性官能团从而提高了功能化涂层与硅橡胶的结合强度。载铜功能化涂层使硅橡胶导管具有良好的抗菌功能。

关键词 材料表面与界面功能涂层逐步化学接枝法硅橡胶导管结合性能    
Abstract

In order to solve the infection caused by the indwelling catheter, an anti-infective Cu-bearing chitosan coating was prepared on the silicone rubber surface. But it is difficult to prepare a coating on the surface of silicone rubber due to its biological inertness. Therefore, chemical grafting was used to activate the silicone rubber by the dopamine pretreatment, which provides abundant functional groups on the activated silicone rubber surface. The surface morphology and surface properties of the silicone rubber after surface activation pretreatment were characterized by the active functional groups. Onto which, subsequently, the Cu-bearing chitosan coating could be chemically grafted, and then the surface morphology was compared for the coatings before and after immersion test. The effectiveness of pretreatment process was assessed by the bonding force between the functionalized coating and the silicone rubber. It follows that the abundant functional groups offered by the pretreatment on the activated silicone rubber surface may be beneficial for enhancing the adhesive strength of the functionalized coating to the silicon rubber. Thereby, the Cu-bearing chitosan coating makes the silicone rubber catheter have good antibacterial function.

Key wordssurface and interface of material    functional coating    stepwise chemical grafting    silicone rubber catheter    bonding ability
收稿日期: 2020-02-16     
ZTFLH:  O647  
基金资助:国家重点研发计划(2018YFC1105504);中国科学院青年创新促进会项目(2019194)
作者简介: 王立蓉,女,1991年生,硕士生
图1  逐步化学接枝处理后样品的XPS谱图
图2  液滴形貌和接触角
图3  壳聚糖涂层和壳聚糖载铜涂层处理后硅橡胶样品的XPS图谱.
图4  用不同预处理工艺涂层处理后样品的形貌
图5  涂层处理后样品表面金黄色葡糖球菌黏附形貌
图6  多巴胺在水溶液中的自聚反应[25]和聚多巴胺自聚反应机理[26]
[1] Yang S Q. Advances in medical polymer materials [J]. Scientific and Technological Innovation, 2018, (22): 179
[1] (杨时巧. 医用高分子材料的研究进展 [J]. 科学技术创新, 2018, (22): 179)
[2] Chen Y H. Research and application of functional polymer materials in biomedicine [J]. Chemical Management, 2018, (17): 96
[2] (陈跃华. 功能高分子材料在生物医学中的研究应用 [J]. 化工管理, 2018, (17): 96)
[3] Yin Y X, Li M Q, Zhou C, et al. Advances in the research of implantable medical devices [J]. China Med. Dev., 2018, 33(7): 111
[3] (尹玉霞, 李茂全, 周超等. 植入性医疗器械的研究进展 [J]. 中国医疗设备, 2018, 33(7): 111)
[4] Shen L S, Lin W C. Application of medical polymer in medical devices [J]. China Med. Dev. Inf., 2018, 24(3): 32
[4] (沈丽斯, 林伟聪. 医用高分子在医疗器械方面的应用 [J]. 中国医疗器械信息, 2018, 24(3): 32)
[5] Li F, Zhang G L, Zhang G. Research progress of medical silicone rubber [J]. J. Qingdao Univ. Sci. Technol. (Nat. Sci. Ed.), 2017, 38(Suppl. 2): 96
[5] (李锋, 张桂林, 张刚. 医用硅橡胶的研究进展 [J]. 青岛科技大学学报(自然科学版), 2017, 38(增刊2): 96)
[6] Liu Z S. Study on surface anticoagulant and antibacterial modification of medical polyurethane materials via ultraviolet irradiation [D]. Guangzhou: South China University of Technology, 2018
[6] (刘章拴. 医用聚氨酯材料表面抗凝及抗菌的光辐照改性研究 [D]. 广州: 华南理工大学, 2018)
[7] Smith R S, Zhang Z, Bouchard M, et al. Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and microbial attachment [J]. Sci. Transl. Med., 2012, 4: 153ra132
doi: 10.1126/scitranslmed.aay7675 pmid: 32801146
[8] Lareau R, Bell B, Santerre J, et al. Catheters with high-purity fluoropolymer additives [P]. America, US8603070B1, 2013
[9] Gao X P, Yu F Y, Chen M, et al. Drug release kinetics of rifampicin from composite gel coating on surface of titanium alloy [J]. Orthoped. J. China, 2018, 26: 649
[9] (高旭鹏, 余方圆, 陈明等. 钛合金表面利福平复合凝胶涂层的药物释放动力学研究 [J]. 中国矫形外科杂志, 2018, 26: 649)
[10] Zhou W H, Jia Z J, Xiong P, et al. Bioinspired and biomimetic AgNPs/gentamicin-embedded silk fibroin coatings for robust antibacterial and osteogenetic applications [J]. ACS Appl. Mater. Interfaces, 2017, 9: 25830
doi: 10.1021/acsami.7b06757 pmid: 28731325
[11] Wang H H. The study on PH-responsive catechol-modified chotosan/hyaluronic acid drug-loaded coating [D]. Chengdu: Southwest Jiaotong University, 2018
[11] (王浩浩. pH响应型邻苯二酚改性壳聚糖/透明质酸载药涂层的研究 [D]. 成都: 西南交通大学, 2018)
[12] Xuan L H. Thin films cobtaining silver nanoparticles: their preparation and physical properties [D]. Harbin: Harbin Institute of Technology, 2014
[12] (薛丽红. 银纳米粒子复合材料的制备及性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014)
[13] Kang H, Ma S Y, Gao X H, et al. Preparation of chitosan/silver-copper composite antibacterial agent and its application on silicone rubber matrix [J]. J. Taiyuan Univ. Technol., 2015, 46: 489
[13] (康虹, 马森源, 高向华等. 壳聚糖/银-铜复合抗菌剂的制备及在硅橡胶基体上的应用 [J]. 太原理工大学学报, 2015, 46: 489)
[14] Jin H, Gao S J, Wang D M, et al. The surface structure and anti-adhesion property of Ag-containing coating on vitallium 2000 plus [J]. Chin. J. Stereol. Image Anal., 2017, 22: 202
[14] (金华, 高士军, 王道明等. Vitallium 2000 plus含银抗菌涂层表面特征及抗黏附性的研究 [J]. 中国体视学与图像分析, 2017, 22: 202)
[15] O’Grady N P, Alexander M, Dellinger EP, et al. Guidelines for the prevention of intravascular catheter-related infections. centers for disease control and prevention [J]. MMWR Recomm Rep, 2002, 51: 1
pmid: 11843093
[16] Wolf M P, Salieb-Beugelaar G B, Hunziker P. PDMS with designer functionalities—Properties, modifications strategies, and applications [J]. Progr. Polym. Sci., 2018, 83: 97
[17] Li Y. Preparation of stimuli-responsive drug-loaded antibacterial coatings based on self-assembled colloidal particles [D]. Nanjing: Jiangnan University, 2018
[17] (李杨. 基于大分子自组装构建刺激响应性载药抗菌涂层 [D]. 南京: 江南大学, 2018)
[18] Sun Y. Plasma modification of biomedical polystyrene film surface [D]. Xi’an: Shaanxi Normal University, 2011
[18] (孙瑜. 生物医用聚苯乙烯膜表面的等离子体改性研究 [D]. 西安: 陕西师范大学, 2011)
[19] Yang J. Plasma abduction PET fibre graf crylic acid [D]. Suzhou: Suzhou University, 2008
[19] (杨静. 等离子体诱导PET纤维接枝丙烯酸的研究 [D]. 苏州: 苏州大学, 2008)
[20] Xu B. Application of low temperature plasma technology in surface modification of polymer materials [D]. Nanjing: Nanjing University of Science and Technology, 2008
[20] (徐彪. 低温等离子体技术在高分子材料表面改性中的应用研究 [D]. 南京: 南京理工大学, 2008)
[21] Shao W, Sun X H, Liu J, et al. Explorationon on the hydrophilicity of PVP-modified silicon rubber medical material [J]. New Chem. Mater., 2016, 44(12): 127
[21] (邵雯, 孙小淏, 刘静等. PVP改性硅橡胶医用材料亲水性的探索 [J]. 化工新型材料, 2016, 44(12): 127)
[22] Bumgardner J D, Wiser R, Gerard P D, et al. Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants [J]. J. Biomater. Sci. Polym. Ed., 2003, 14: 423
pmid: 12807145
[23] Ji J H. XPS study on Cu2+-chitosan chelate and adsorption mechanism of chitosan for Cu2+ [J]. Chin. J. Appl. Chem., 2000, 17: 115
[23] (季君晖. Cu2+-壳聚糖螯合物及壳聚糖吸附Cu2+机理的XPS研究 [J]. 应用化学, 2000, 17: 115)
[24] Ji J H. Behaviors and mechanism of chitosan adsorbing Cu2+ in solution [J]. Ion Exchange Adsorpt., 1999, 15: 511
[24] (季君晖. 壳聚糖对Cu2+吸附行为及机理研究 [J]. 离子交换与吸附, 1999, 15: 511)
[25] Wang X. Dopamine-assisted deposition of polyethyleneimn (PEI) for efficient surface functionalization [D]. Chengdu: Southwest Jiaotong University, 2014
[25] (王鑫. 多巴胺辅助沉积聚乙烯亚胺薄膜及其表面生物功能化研究 [D]. 成都: 西南交通大学, 2014)
[26] Chang X J. The investigation of bio-inspired material dopamine on the modification of PVDF membrane [D]. Harbin: Harbin Institute of Technology, 2014
[26] (常晓晶. 仿生材料多巴胺对聚偏氟乙烯超滤膜改性的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014)
[27] Li X B, Liu Y. Control and prepartion to wettability of material surfaces [J]. J. Mater. Eng., 2008, (4): 74
[27] (李小兵, 刘 莹. 材料表面润湿性的控制与制备技术 [J]. 材料工程, 2008, (4): 74)
[28] Yang B. Surface and Interface of Polymer Materials [M]. Beijing: Academic Press, China Standards Press, 2013: 299
[28] (杨彪. 聚合物材料的表现与界面 [M]. 北京: 中国质检出版社, 中国标准出版社, 2013: 29)
[29] Busscher H J, Weerkamp A H. Specific and non-specific interactions in bacterial adhesion to solid substrata [J]. FEMS Microbiol. Rev., 1987, 46: 165
[30] Taylor G T, Zheng D, Lee M, et al. Influence of surface properties on accumulation of conditioning films and marine bacteria on substrata exposed to oligotrophic waters [J]. Biofouling, 1997, 11: 31
[31] Duncan-Hewitt, W C. Nature of the hydrophobic effect. Microbiol Cell Surface Hydrophobicity [M]. Doyle R J, Rosenberg M. Washington D C: ASM Publications, 1990: 39-73
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[12] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[13] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[14] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.
[15] 张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性[J]. 材料研究学报, 2021, 35(5): 349-356.